-r_.__.—._, PREMIER

AIVIE ;J":)’—f @] JJJI~tJT SERIES

P-RDG-R-FIITINHNG

-FILhﬂN DNE

BrunogMiguelsTeixeirasdesSousa
m’"u:: /

IT'!’:;T{:' CEOD Xtreme Games LLC

e ﬁwm

GAME
FPROGRANMMING

HLL 1IN ONE

This page intentionally left blank

GAME
FPROGRANMMING

HLL 1IN ONE

Bruno Miguel Teixeira de Sousa

EEEEEEEEEEEE

EEEEEEEEEEEEEEE

rrrrrrr

sssss

© 2002 by Premier Press. All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without written permission from Premier Press, except for the
inclusion of brief quotations in a review.

Premier

- Premier Press, Inc. is a registered trademark of Premier Press, Inc.

Press

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell
Acquisitions Editor: Mitzi Foster
Series Editor: André LaMothe
Project Editor: Heather Talbot
Technical Reviewer: André LaMothe
Copy Editor: Jenny Davidson
Interior Layout: Marian Hartsough
Cover Design: Mike Tanamachi
CD-ROM Producer: Keith Davenport
Indexer: Kelly Talbot

Proofreaders: Anne Owen, Fran Blauw, Linda Seifert

Microsoft, DirectX, DirectSound, and DirectIlnput are registered trademarks of Microsoft
Corporation.

Jasc and Paint Shop Pro are trademarks or registered trademarks of Jasc Software, Inc.
All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-23-3
Library of Congress Catalog Card Number: 2001096486
Printed in the United States of America

0203040506RI10987654321

De todas as coisas que quero,
€s a unica coisa que eu preciso.

Para i, Ana.

Acknowledgments

Now is the time I should go up to the stage, get the Oscar, and recite a book-
length script of all the people that helped make this book. However, the
thank you would probably be as big as this book, so to prevent from forgetting any-
one, I would like to thank everyone that directly or indirectly made this book possi-
ble.

On the technical side, I would like to thank the people at Premier Press for giving
me the opportunity to write this book. I would also like to thank my editors, Emi
Smith, Mitzi Foster, Heather Talbot, and Jenny Davidson for all their patience and
all they had to put up with. (Yes, the usual delays and the incessant questions.)
Please remember that what you are reading is not a book that I wrote myself, but
one that comprises the work of many talented people who are usually forgotten.

I would also like to thank André LaMothe for reviewing the book.

On the personal side, I would like to thank my mom and dad for their support and
love during my life, and of course, for paying those enormous Internet bills when I
was still learning game programming.

I would also like to thank all of my friends and relatives for their support not only
with the book, but also with my life. I would like to send a special thanks to Diana
for always being there for me whenever I needed her.

Last, and probably most important, I would like to thank Ana for her love, support,
patience, and just about everything. I love you from the bottom of my heart.

?‘—'Jj“ﬁ_'F sy m—”—‘ﬂ_uan—_l_lfdﬂ%—r'ﬂ
About the Author

BRUNO MIGUEL TEIXEIRA DE SOUSA began programming at age 11. Although he
began his programming career at age 15 as a database programmer in Visual Basic,
he never lost his passion for game development. Two years later, he began a full-
time career performing general game programming for a UK-based company. He
has been using C++ for more than 4 years and remains an avid game hobbyist.

RONALD PENTON wrote Chapter 17. Ron started programming on his Tandy 1000TL
way back in 1989, when he became interested in making games, rather than just
playing them. Ever since then, he has been on a never-ending quest to learn more
about computers and become more efficient at programming them. He started
school at the Rochester Institute of Technology in 1998, and is currently finishing
his bachelor’s degree in computer science at The University of Buffalo.

Contents at a Glance

Part One
C++ Programming.

CHAPTER
CHAPTER
CHAPTER

CHRAPTER

CHRAPTER
CHRAPTER
CHAPTER
CHRAPTER

CHAPTER

Part Two

1

=4
X
(T

b m~Nm

INTRODUCTION XXXV1

INTRODUCTION TO C++ PROGRANMMING s s s s 8 X
VARIARLES AND OPERATORSs s s s s s s s 1 25
FuNcTiONS AND PROGRAM FLOW s s s s 5 1 1 51

MuLTiIPLE FILES AND THE
PREPROCESSOR s s s s s s s s s s s v n v v ¢ 5

ARRAYSy POINTERSy AND STRINGS: » & = « 107
CLASSES s s s s s s s s s s s s s s s s » » s 8 15X
DEVELOPING IYIONSTER s s s s s s s » = s & » 1837
STREAMS s s s s s s s s s s s s s s n 0 v v » 2H5

KBAs1c SOoFTWARE ARCHITECTURE & & 1 s ¢ 2789

Windows Programming 297

CHAPTER

CHRARPTER
CHAPTER
CHRAPTER
CHRAPTER

CHAPTER

10

11

1=
1X
14
15

DESIGNING YOUR GAmME
LIERARYEI MMRUS &« s s s s s s s v = s » = » 299

KReEGINNING WINDOWS PROGRANMMING s s & 8 X17
INTRODUCTION TO DNRECTX o s s s s 0 v » 8 X57
DIRECTX GRAPHICS s s s s s s s v = » = v » XBE3H

Illllllllllllllllszl

llllllllllllllll557

D1RECTINPUT

DiRECTSOUND

Contents at a Glance ix

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Part Three
Hardcore Game Programming 595

CHRAPTER 1B INTRODUCTION TO GAME DESIGN s & & = = « 5837

CHAPTER 17 DATA STRUCTURES AND
HALGORITHMS s o s s s s s s s v s v n v » v « B2OO0Y

CHAPTER 1H THE MATHEMATICAL 51D oF GAMES » » « BB

CHAPTER 189 INTRODUCTION TO ARTIFICIAL
INTELLIGENCE « s s s s s s s s s v v v » v » v B23297

CHAPTER 20 1INTRODUCTION TO PHYSICS YIODELING & 5 & 72X
CHAPTER 21 ERulLDING BEREAKING THROUGH s s s = = =« 791

CHAPTER 22 PURLISHING YOUR GAME s s s s s s s s s s BH51

Part Four
Appendixes863
AprrPENDIX H WHATIS oN THE CD-ROM « = s = s = =« s « HES

ArrPENDIX B DeERUGGING UsING IMICROSOFT
VISUAL C++ s s s s s s s s s s s s s n n n « » B70

ArPPENDIX C RINARYy HEXADECIMALy AND

DECIMAL SYSTEMs = s s s s s s s s s s » » s H74Y
HAPPENDIX ACPRIMER s s s s s s s s s s s s n n n » a B77
HAPPENDIX ANSWERS TO THE EXERCISES « s = = = » « HHS
HAPPENDIX C++ KEYWORDS s s s s s s s s s s == s HIX

APPENDIX UseEFfUL TABLES s s s s s s s s v n s = » » » HEI5

Trmmthnma

HAPPENDIX MoRE RESOURCES s s s s s s 30O2

INDEX s s s s s s s s s s e 307

Contents

LETTER FROM THE SERIES EDITOR 5 5 5 5 51 5 8 XXX1V

INTRODUCTION & s s s s s s s s m ¢ 0 mn n m m m m 8 XXXVI
Part One
C++ Programming.1

CHAPTER 1
INTRODUCTION TO C++ PROGRANMMING s 5 8 X

Why Use CHHl . . i ittt iiiiiiitettetneeoeneoneesesnssnsanenns 4
SettingUpVisual CH+ it it ittt iiiiitnneennns 5
Creating aWorkspaceottt e 5
Creating Projects. 6
Creatingand Adding Files 8
Your First Program:“Hello all you happy people” 9
Structureof aC++ Programottt ittt it i i i e 12
Program Design Language e 12
Program Source and Compiling. 14
Objects and Linking.o 14
Executable. e 15
CommeENtingttt ittt it i it it it et e e 16
Catching Errorso ittt ittt ittt tnennennennennns 17
W arnings & .ottt ittt ittt ittt 20
SUMMIANY « ittt ittt ittt teeteeeeeseeseesesssssseneanannnns 21
QuUESLIONS ANA ANSWELS . . . ¢ v vttt tenooeeoocooscooscanscoenscnsses 21

Contents xi

_:I,—l_u_f—._l_lﬁ,_d—l_l -——|_|—-—|_.—F|J_”15I—l—|_p—'—|_'_

CHRAPTER 2
VARIARLES AND OPERATORS s s s s s 25

Variablesand Memory.ottt ittt ittt 26
What Type of Variables AreThere? ittt 27
Using VariablesinYour Programs i, 30
DeclaringaVariable 30
UsingVariables. e 31
Initializing Variables 32
Variable Modifierscciiiiiiiiiiiiiiiiieiiiieinneennnns 33
CONSt .« et e 33
Register. . .o 35
Variable Naming ittt nnennnns 36
Redefining Types. . .« ot ittt ittt it ittt tnenneanennenns 36
WhatlIsan Operator?iiiitiiiiiiiieeinnerenneeeneeenneens 37
Assignment OPeratorttt e 37
Mathematical Operatorsttt e 37
Unary OPeratorsttt et 38

Binary Operatorsttt e 39
Compound Assignment Operatorsvitttnenennneenn.. 4|
Bitwise Shift Operators.......... ... ittt iiiiiieeennnn 41
Relational Operators.cciiiiiiiiii ittt iienneeeennennanns 42
Conditional Operatorcoiiiitiiiiiiiieiietneaneoneneennns 43
Logical Operatorsiiiiiiiiiiiiiiiiiieeeeennnnennnnnns 44
Operator Precedencecoiiiiiiiiiiiieineenennennenennnns 45
SUMMIANY + .t ittt ittt tietneeeeeneeosessesossassssesscnscnasnnas 47
Questions aNd ANSWEKS . . .t vt ittt et neeeeeoeoeeoeoasencaseacases 48

Y] o 17 =L 48

Xii Contents

CHAPTER X
FUNCTIONS AND PROGRAM FLOW: = = = s 51

Functions:What Are They and What Are They Used For? 52
Creatingand UsingFunctions i iiiiiiiiiiiiiiennennns 54
Declaring the Prototype i 55
Return Type. . . oo e 55

Name ... e 55
Parameters 56
Function Body e 56
Default Parametersttt iiineenneeonnnennneas 58
Variable Scopeciiiiiiiiiiiii i it i ittt 60
Locals . .o e 61
Global 6l
SAtIC . . ot 62
RecUrsionottt ittt iiiineeneeenneconnnenneeas 64
Things to Remember When Using Functions. 66
Program Flowttt ittt iietnneneaneanenns 66
Code Blocksand Statementsciiiitiiintiinneenneeannns 66
if,elseif,else Statements.ciiiiietireeeeereeoesesosenannns 67
1 67
BlSE . 70
while,do ... while,and for Loopsttt 70
While . oo e 70
do..while. . . e 72

1o o 73
Breakingand Continuing. ittt 75
break. 75
CONLINUE . .ottt ettt e e e e e e e e e 76
Switchingtoswitch ittt 77
Randomizingttt ittt tnennennennnnns 80
First Game: “Craps’ottt ittt tieeinernesnsoneaneanenns 83
ObjeCtiVe. . o ot 83

Contents

DESigN . . o e 84
Implementation 85
SUMMIANY .« ittt ittt ittt teeeneeeeseeseeaessneseeneanannnas 92
QuUESLIONS ANA ANSWELS . . . ¢ vttt vt teneeeeoocooscooscanscanssonses 93
EXErCiSES. o o i i ittt ittt tieieteeeeeeoeeoeoeasoaeaseasascanancass 93

CHAPTER Y
MuLTiPLE FILES AND
THE PREPROCESS0OR s s s s s s s s s » ¢ 35

Differences between Source and Header Files 96
Handling Multiple Files it ittt 97
What Is the Preprocessor?ciiiiiiiiiiiiiieiiieiinennenns 99
Avoiding MultipleIncludes. i i i i 101

USING HPragma.ottt e e e e 01

Using #ifdef, #define,and #endif il 102
g = el o T 104
Other Preprocessor Directivesciiiiiiiiiiiiiieinennennns 104
SUMMANY & it ittt ittt tieteeeeeeoeeeoesnsesossasssssssannsnnes 106
(Y o 17 Y 106

CHRAPTER 5
HARRAYSy POINTERSy AND STRINGS « « « 1007

What Is an Array? e 108
Declaringand Usingan Arraycoitiiiietieeneenennennenns 109
Declaration o 109
USiNg . oot 109
Initializing an Array. e 112
Multi-Dimensional Arrayscciiiiiiitieiieetneetneaneanenns 112
Pointers toWhat?ttt inieennenenneenns 116
PointersandVariables ittt 117
Declaring and Initializing 117

Using Pointers.o 117

Xiv Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

Pointers and Arraysciiiii it iineneeneenesnenneansannnns 119
Relation of Pointers to Arrays i 119
Passing Arrays to Functions 120

Declaring and Allocating Memory toa Pointer. 122
Allocatingthe Memory 123
Freeing the Memory o e 123

Pointer Operatorsccviii ittt iineieeeneenesnessennnanenns 126

ManipulatingMemory i i i i i e 129
10 1=T o' el o) 129
MMEMSEL . .ttt ettt ettt e e e e 130

] T 131
Strings and Arrays 131
USiNg SEriNgs . . . oot e 132

Strings and Arrays 132

String Allocation at Compilation i .. 132

Input and OULPUL e 132

String OPerationsttt e e 133
o)P 133
o Ve P 134

] 1Y o 135

SEICAL. « v ettt e 136

SEIMICAL. « o o e et e et e e e e e e e e 138

o el o P 138
SEINICIMIP . & e e et e et e e e e e e 140

SErCRr e 140

]] 142

1o 143

ALOf L 145

AtOl L . 145

SPFiNt . . e 145
Strftimeo 147
SUMMANY & i ittt ittt ittt teeteeteesessessessesssssnenasnnns 150
QuUESLIONS ANA ANSWELS .« ¢ v ottt i ittt teoeeeosoeeososeoaasenacennceans 151

Contents XV

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

CHRAPTER B
CLASSESs s s s s s s s s s s s nnunnanaun 15X

WhatlsaClass?.iiiiitiiiiiiiietiiieenneeeneeenneennnnns 154
NeW TYPeS. . ot e 155
Building Classesottt ittt iiiiiiiii ittt 155
DESigN . . . 155
Definition e 156
Implementation 157
Using Classeso ittt ittt ittt tieeneeeesnesneananns 158
Private, Protected,and PublicMembers........ 158
PriVate . . o e 159
PUDliC. . o 159
PrOteCted. . . ottt e 159
What Kind of Access IsRight?. 160
Constructors and the Destructorttt ennns 161
Default Constructort e e 161
General ConStrUCLOrS v vttt et et e et e et 162
Copy Constructor and References 162
Destructor e 163
Operator Overloading ciii ittt ittt iinneennns 164
Putting It All Together—The StringClass.o 166
Basics of Inheritance and Polymorphism. o0 172
Inheritance. e 172
Derivingfrom a Class i 173

Virtual Methods. 174
Polymorphism o 178
Casting . o ot 180
Enumerations.oiiitiiii ittt tnreanneans 182
LU T o 183
StaticMembers i i i i i i i e e 185
Useful Techniques Using Classesciiiiiiiiiiiiiiininnenns 186
ASingleton Class. 186

An Object Factory. 190

XVi Contents

SUMMIANY & it ittt ittt it teeeeeeoneeoesnsesosssssssssenssnnes 195
QuUestionNs aNd ANSWEKSttt i i it tneeneeoeoaeeoeasenenasancasans 195
EXErCiSes. . .ot v i ittt ittt neneeesoocesossassossoscssoacasonns 196

CHAPTER 7
DEVELOPING IYIONSTER s s s s s s s s » » 137

LT 11 I 198
SN . . 199
Implementation 202
BuildingMonster ittt anannn 215
Objective. . . oo 215
Rules . . 215
DESigN . . . 216
Game Description.t 216
Thinkingin Classes i 216
Implementation e 221

SUMMANY & it ittt ittt it teeeneeeeeoesnsesosasssnsssannsnnes 244

CHAPTER H
BTREANMS s s s s s s s s s s v v n n n n » 2H5

WhatlsaStream? ittt iiineeinneeonesonnesannnss 246
BinaryandText Streamsttt ittt ittt nneenneeeaneenns 246
Inputand OQutput. ittt ittt ittt ittt anaann 247
=" 247
B Lt 248

getline . .. 249

7 =(3T 250
Extraction Operator (>>) i 251
OSEIEAM .« . v vttt et et e e e e e e e e e e e e e e 251
PUL et e e e e e e 251

flush .o 252

Contents

File Streams.ttt iineeennneonesonnnenns 253
Opening and Closing Streams i 253
OB & . ettt e e e e 254

close . . 255

IS PN L ot 256
= 259
BiNary . .. 264
W L ot e 264

FEAd. « i e 267

SEEKE. . 268

SEEKP. « e e 269

tellg. .o 269

tellp. o 269
Modifying Monster to Saveand Load Games 270
SUMMIANY & ittt ittt ittt tieeneeeeeeesnesesssessssnenasnnns 277
QuUEStioNs aNd ANSWEKS . . vt v i ittt enneeeeeeeeanoococeeannnasans 278
EXercises. . .o ovvtiiitiiiiiiiii ittt ittt 278

CHAPTER H
EAS1C SOFTWARE ARCHITECTURE »« s » 279

The Importance of Software Design.............. . .o, 280
Design Approaches.ottt ittt tietneeneeneanenns 281
Top DoOWN . .. 281
Bottom Up 282
Top DownVersus Bottom Up 282
Some BasicTechniquescoiiiiiiiiiiiiiiiiiieinennennns 283
Example I: Assignment Instead of Equality Operator 283
Example 2: StatementsVersus Blocks L. 284
Example 3: MacrosVersus Inline Functions 284
Example 4: Private Versus Public,the First Case 285

Example 5: Private Versus Public, the Second Case 287

X Vil

X Viii Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

Modules and Multiple Files ittt 288
Creating Modules with C++ o 288
Why Make Somethinga Module?. 288

Naming Conventionsttt it ittt iieeineeneenenneannnns 289
Function Naming. 289
Variable Names 290
Identification 290

Where Common Sense Beats Design.................... .. .0 292

The Design Used inThisBook. ittt 292

SUMMANY & it ittt ittt tieieeeneeoneenesnsesosassssssnannsnnes 293

Questions aNd ANSWEKSt ot vttt tieeeeeeoeneesensenenasancnsans 294

EXercises. . oo vvtiiiiniiiiiiiie it enieeoneeeoneconesanneenns 295

Part Two

Windows Programming 297

CHAPTER 10
DESIGNING YOUuR GAmME
LIERARY: WINRUS s« s s s s s s = » s » » 289

General Description. ottt ittt i i i i i 300
Mirus Components.o ittt ittt ieeneenessesseaneannnns 301
Helper Componentttt nnnnnneeenns 301
Window Component.cooiiiiitiiitieetneeneeneeeeanesnennans 302
Graphics Component. cv ittt ittt tietnetnesnesnensennns 302
0T Y o =YY o 303
MrRGBAIMage 303
MISUrface 304
METEXEUNE « o o ettt et e et e e e e e e e e e e ettt e 304
mrlemplateSet. 304
MrANIMAtIoONo 305

Contents Xix

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Sound Component. ov ittt ittt tetteesetnesnenaenans 306
mrSoundPlayer. 306
MrCDPlayer. 306

Input Componentiiiiiitiiitiiieiieeineenessesseansananns 307
mreyboard. 307
MIEMOUSE . . o o e 307
MEJOYStiCK . . o 308

Building the Help Component. ittt 308
Declaring the Typeso i e e 308
MITIMEr . . 309
How to Create the Error File 315

HowtoUseMirusciiiiiiiiiiiiieiiniriinneenneeenneenns 316

SUMMIANY & ittt ittt ittt teeeeeeoneeosesnsesosssssssssnannsnnes 316

Questions aNd ANSWEKS . . . v o i ittt eeeneeoeoaeesenasaneasancasans 316

CHAPTER 11
EREGINNING WINDOWS PROGRANMMING » « X17

Historyof Windows ittt ittt ittt enneenns 318
Introduction to Windows Programming i 319
WiNdows. . .o 319
Multitasking 321
Windows Has Its OWn APl 322
Message QUEUESottt 322
Visual C++ and Windows Applications., 322
Building the Windows Application. i it 323
WinMainVersus Main. 326
CreatingtheWindow i 328
TheWindow Class e 328
Creating theWindow 332

The Message LOOp.ot 334

The Message Handler 335

XX Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

Creating a Real-Time Message Loop.cciiiiiiiiiiiinnnn.. 336
Making a ReusableWindow Classciiiiiiiiiiiinneenn. 342
Using the Mirus Window Framework o i, 350
Some CommonWindow Functions. it 351
SetPOSItION. . . o e e 351
GetPoSItioN e 352
SetSize. . o 354
GetSiZE . ot e 354
L 1T 355
SUMMANY & ittt ittt ittt ieneeseoeeoeenesossssssssssennsanes 355
Questions aNd ANSWEKS . . . v ot ittt ierenenoeoeesensenensancnsans 355
EXercises. . . oo ittt ittt it i i i it it et 356

CHAPTER 12
INTRODUCTION TO DNMRECTX o s s 51 » s » X57

What s DirectX?. ... ittt ittt tiiiititeeeneeenneeanneas 358
Brief History of DirectX ittt iieenennennnnns 359
Why Use DirectX?ottt iiiiiiiiitiineeeneeenneennnens 360
DirectX X Components. . ..o oo iit ittt ieteeeneesesseseesnesnsans 361
How Does DirectXWork?ottt ittt ittt tneaneanenns 362
Hardware Abstraction Layer i i 362
The Component Object Model i, 363
Virtual Tables. o 365

COM and DirectX. . .ottt e e e 365
How to Use DirectX withVisual C++o, 366
SUMMANY & ittt ittt ittt ieeeneeoneeoesnesossassssssssnnsnnes 367
Questions aNd ANSWEKSt ottt it et eneeoeoeeseoaseaenasancnsans 367

Contents XXi

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

CHAPTER 1=X
DIRECTX GRAPHICS s s s s v s = = = » » X582

InterfacesYouWillBe Usingc0 ittt nnnnns 370
Using Direct3D:The Basicsottt iiiiiiiiiiiiiieiienneanenns 372
Surfaces, Buffers,and Swap Chains it iiiiiie 387
SUMfaCES . . 387
Buffers. 388
Swap Chains 388
RenderingSurfacesttt iieinennennenns 389
Vertices, Polygons,andTextures.ttt nnennnns 397
Vertices and Polygons 397
TEXtUNES ettt 398
Texture Coordinates.ttt 399

From the Third Dimension to the Second 401
Rendering in 2D e 401
Windows Bitmapsottt iii ittt ineeneonennsnnnnns 411
Bitmap Structure. 411
Loadinga Bitmap.ot 413
Full Screen and OtherBitModes i, 414
ColorTheory and Color Keying.ttt 416
Color Theory e 416
Color Keying vt e 419
TargaFiles oottt i i i ittt i it ittt 420
Structure of aTarga File. 420
LoadingaTarga File 421
AnimationandTemplate Sets i, 422
ANIMationo e 422
Template Setso e 423
Collision Detectionciiiiiiitiiiitiiiieiiieeinneennenennns 424
BoundingVolumes e 424
Bounding Circles e 425

Bounding Rectangles 426

xXxii Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

2D Image Manipulation ittt i i i i i e i i 428
Translation. 428
Scaling . ..o 429
ROTatiON . .ttt e e 430

2D Primitives Revealedc ittt nrierenncncncananns 433
LiNeS . e e e 433
Rectangles and Other Polygons i 437
Circles. . oo e e 438

Developing Mirusottt ittt ittt tieeneonennennanns 438
00T oY of /== o OO 439
mrRGBAImage 458
MESUI ACE . . ottt e e 472
M EXEUNE .« o ottt ettt e e e et e e e 480
mrlemplateSet. 488
MEANIMAtION . L . ot e e e 493
MEABO . . e e 501

SUMMIANY &+ttt ittt ittt tineteneeeoseeonneesseesnneesnessnnas 519

QuUESLIONS ANA ANSWELS .« ¢ v ottt vt ettt eeeeeosoeeeoceoasenscannseans 519

EXerCises. . o v ittt ittt ittt ittt 520

CHAPTER 14
DIRECTINPUT s s s s s s s s sz 521

Introduction to Directlnput. ittt 522
Unbuffered Datattt e 523
Buffered Datat e 523

mrinputManager ittt i i i i i i e 524

mrKeyboardttt i i it i i e 527

MIrMoUSE ... ittt it ittt ttneeennseanesannaenns 541

Mmrjoystickttt i i i i i i i e e e 554

SUMMIANY & it ittt ittt tinetoneeeoneesneeesseeanseesnessnnes 565

QUESLIONS ANA ANSWELS .« ¢ v ottt ot ettt eeeeeeoeeeoseesasenacennseans 566

Contents xXXiii

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

CHAPTER 15
DIRECTSOUND s s s s s s s s s 557

SoUNdThEOKY. . . ittt i ittt teenesnennannannns 568
DirectSound Basicsciiiiiitirinrierereresecoecnsnsansnss 569
mrSoundPlayer ittt it it it it 571
MIESOUNd. . ..ttt ittt ittt reteseenanssssssssesosssnsnsasssss 575
Media Control Interface. ittt ittt ittt eeeeonsnsnnenss 586
MrCDPlayer.oi ittt ittt ittt tieneenneronneenns 587
1 0] 0 o0 T T 593
QuUESLIONS ANAd ANSWELS .« v v ottt it ieeteneeeosoceosocoosasosssanacosns 593
EXerCises. . « v ittt iiiinieeeeeoneesoosesossessssossossnsessnsse 594
Part Three

Hardcore Game Programming 595

CHAPTER 1B
INTRODUCTION TO GAME DESIGN: » » « 5837

What s Game Design?c ittt iiinnnneeenns 598
The Dreadful Design Documentoi ittt inennennnns 599
Why the “It’s in My Head” Technique Isn’t Good 600
TheTwoTypesof Designs.ottt iinnnnnnns 600
Mini Design oo 601
Complete Design.o 601
A Fill In Design DocumentTemplate i, 602
General Overview. e 602
Target System and Requirements. i, 602
SOy ¢ e e 602
Theme: Graphicsand Sound 603
MENUS . . .o 603
Playinga Game e 603

Characters and NPCs Description 603

xXXiv Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

Artificial Intelligence Overview 603
Conclusion 603

A Sample Game Design:Spacelnvaders., 604
General Overview. 604
Target System and Requirements. L., 604
SO Y . o et 605
Theme: Graphicsand Sound 605
MenUS . . 605
Start New Game.o e 605
Continue Previously Saved Game 605
SeeTable of High Scores i i 605

O PtiONS. .« o et 606

EXit . o 606
Playinga Game 606
Characters and NPCs Description i, 606
Normal Ships.o 607

Bonus Ships. . ..ot e 607
Artificial Intelligence Overview 607
Conclusion 607
SUMMIANY & ot ittt ittt tieteeeonseoeesossassessessssssssscnnes 607
QuUESLIONS ANA ANSWELS .« ¢ v ottt it ittt eneeeeocecsoceosceoacannceans 608
EXercises. ..o vv ittt ittt ttetreanntannneanneans 608

CHRAPTER 17
DATA STRUCTURES
AND ALGORITHIMIS « = s s s s » s » » » » B200Y

The Importance of the Correct Data Structures and Algorithms 610
I 612
Basic Structure 613
lterators 615
Insertingintoa Listo 618

Appending ltems toa List 619

Contents XXV

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Deletinga Node froma List 620
Doubly Linked Listso 621
Modifying the Algorithms for Doubly Linked Lists 622
Circular Lists.o 622
Advantages of Lists 623
Disadvantages of Lists i e 623
=T 624
General Trees . . oo vttt ittt ittt tinneenneeonneenneeannas 625
Constructinga General Treeottt e 629
Traversinga General Treeo i e 630
General Tree Destructor.ottt 632
Uses of General Treesottt e e 632
Binary SearchTrees it ittt ittt iieineaneanenns 633
A PrimeronBinaryTrees i 633
What Is a Binary Search Tree? 634
Searching a Binary Search Tree. 635
Inserting into a Binary SearchTree 637
Removing a Value from a Binary SearchTree 638
Efficiency Considerations. i e 646
Uses of Binary SearchTrees. i i 647
SortingData.ciiiiiiiiiiiii ittt 648
Bubble Sortt i i i i i i it 648
Swap Counter Optimization 649
Declining Inner Iterations e 650
Combining the Optimizationsttt 650
The QUICK SOrt ..ottt t ittt it teeeteeeeeeoeeanceansennses 651
Another Optimization.t e 653
Source Listingottt 653
Comeparisons of the Sortso 655
COMPFESSION & .t ittt ittt it ineeeeeeeenesessossssssnennsnnns 656
RLE Compressioncoiiiiiiiiieeneeneeneonesneansansnns 657

RLE Compression Codettt 658

XX Vi Contents

SUMMIANY & it ittt ittt it teeeeeeoneeoesnsesosssssssssenssnnes 659
QuUestionNs aNd ANSWEKSttt i i it tneeneeoeoaeeoeasenenasancasans 659
EXErCiSes. . .ot v i ittt ittt neneeesoocesossassossoscssoacasonns 660

CHAPTER 1H
THE NIATHEMATICAHL
SI1IDEOF GAMES s« s s s s s s s s s n » » BEH1

LI ¥ -e T Lo T s =Y o 662
Visual Representationand Laws. i 662
Angle Relations 666

VECtOrS . o vt vttt it ittt ettteteatetanerenneeaneas 667
Addition and Subtraction. L 671
Scalar Multiplication and Division oL 673
Length . . .o e 674
Normalization 674
Perpendicular Operation. i 675
Dot Producto e 676
Perp-dot Product. 677

Matrices . ..o ii ittt it i i i i it i i et e 678
Addition and Subtraction. 681
Scalar and Multiplication and Division 682
Special Matrices. 684
TraNSPOSE . . . it e 685
Matrix Concatenationttt 686
Vector Transformation.ttt e e 688

Probabilityccoiiiiiiiiiiiiiiiii ittt 688
SEtS . o 689
UNiOn .. e 689

Contents

Functionsttt ittt ittt ieitnnnneeennns
Integration and Differentiation. il

Differentiation ot

CHAPTER 19
INTRODUCTION TO

XXV

HARTIFICIAL INTELLIGENCE =« = = = = = s s BE7

The Various Fields of Artificial Intelligence.........................
EXpert Systems
Fuzzy Logico e
Genetic Algorithms
Neural Networks e e

DeterministicAlgorithms i i i,
Random Motion.
Tracking. . . oot e
Patterns. . . .o

Finite State Machines. it it ittt

Fuzzy Logicciiiiiiiiiiiii ittt tneenesnennennaannnns
Fuzzy Logic Basics o

Fuzzy Matrices.o e

xxviii Contents

CHAPTER 20
INTRODUCTION TO
PHYSICS YIODELING s s s s s s s s s s 3 72X

Introductionto Physicsii ittt 724
Buildinga Physics Engine.ttt ittt nnennenns 725
Why Make a Physics Engine? 725
Designing the Engine 725
MEENtity . .. 726

Basic Physics Conceptscoiiiiiitiiiiiiiiieinneeeneeenneenns 728
Mass .« o 728
T Lo e 729
POSItioN 729
VeloCity . oo e 731
LinearVelocityo 731
AngularVelocity. o 732
Acceleration e 732
Linear Acceleration o 733
Angular Acceleration. 733
Center of Massottt e 734
Forces. . . i vttt it it ittt ttneseansssnnsonnnenns 735
Linear Force 736
TorqUE. . oo e 739
TheResulted Force. i 740
Gravitational Interaction. ittt 741
Law of Universal Gravitation e 742
Gravity on Earth and Other Planets 743
Simulating Projectiles. 745
Friction.ttt iinieenneeonneeenneenns 748
Friction Concept. ot e 748
Decomposing Friction. 749

The Normal Force e 749

Contents XXiX

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Static Friction 751

Kinetic Friction e 752
Friction on a Sloped Surface 752

The Computer Method. e 753
Handling Collisionsiiiiiiiiiiiiiiiiiiiiiiiiienennn 755
Maintaining the Momentum 755
Conservation of Momentum i i 755
Thelmpulse Method 756
Simulating ittt i i it it it it i 761
Getting the Step . . . oottt e 763
Particle Systems. ittt i i i i i it e i 770
Particle Systems 101 770
Designing a Particle System 770
Particle Systems’ Data Structures 770

Making [tWork 775
Particle Demo. o 784
SUMMIANY & ittt ittt tineeoneeeoneesneeenseesnseesnesannas 788
QuUESLIONS ANA ANSWELS « ¢ v ottt vt eeeteeeeeeoceeoseoaseoasanaseans 788
EXercises. ..o vv ittt ittt ittt 789

CHAPTER 21
RuUiLDING BEREAKING THROUGH = = = » » 791

Designing BreakingThrough i ittt 792
General Overview.ottt e 792
Target System and Requirements. i, 792
SOy . et 793
Rules . . 793
Theme: Graphicsot 794
MenUs 795

XXX Contents

Code Design . . .t 798
btBlock 798
btPaddle 798
btBall. . .. 798
btGame. . .. 799
BreakThroughWindow 799

Building BreakingThrough ittt 799

btBlocko e 800

btPaddle. e 804

btBall. . . 809

btGame 817

BreakThroughWindow 848

Conclusionttt i i i i i i i e i e i et 850

CHRAPTER 22
PURLISHING YOUR GAME « v v s s s s « H51

IsYour Game Worth Publishing? i i, 852
Whose Doorto Knock On.ottt inneeennens 853
Learnto Knock Correctlyt iiiiiiiiennenns 854
L O - T o 854
Non-disclosure Agreement i 855
The Actual Publishing Contract i 856
Milestonesiiiiiiiiiiniiiirenneroeenennnsonnnonnnenns 856
Bug Report 856
Release Day. e 857
No Publisher, NowWhat?iiitiiieteeerteeerenocnnnnns 857
Interviews. c ittt it i i i it i i it e 857
Niels Bauer: Niels Bauer Software Design. 857
André LaMothe: Xtreme Games LLCo oL 859
SUMMIANY &« it ittt ittt titettnneeoseesoneesoeesnseesnnsannas 861
Referencescoiviiiiiiiiniiiieiiiieiineeenneeonencaneenns 861

Contents XXXI

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Part Four
Appendixes8b63

ArrPENDIX H
WHATY's oN THE CD-ROM « =« = = =« » « HBES

SOUNCE v vttt ittt tineeenneeaneeesnesossesasesansssnnesannes 867
Microsoft DirectX X 8.0 SDKt iiiiiiinnennn 867
Programs c ittt ittt it i i i i i i e 867
Jasc Paint Shop Pro 7. 867
Syntrillium Cool Edit 2000. 868
Caligari TrueSpace 5. i e 868
L T 3 4 T 868
GemMArop. . . ot 868
SMiley . .o 869
SMUgglers 2 . . e 869

HrPPENDIX K
DERUGGING LUSING
MICROSOFT VISUAL C++4. 5 = = = = = =« « B70

Breakpoints and Controlling Execution. i 871
Breakpointso 871
Controlling the Executiont e 872

Modifying Variables During Runtime i i, 872

WatchingVariables. ittt i i i i i i e 873

HrPENDIX C
RBINARYy HEXADECIMAL,
AND DECIMAL SYSTEMs =« s s s s s s v « B74%

xXXXxii Contents

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

HPPENDIX D
ACPRIMER s s s s s s s s s s v n n v « B77

Standard Inputand Output.ttt ittt nnennns 878
Filelnputand OQutput ittt iieineeneannnns 879
Structures:Say Bye-Bye to Classeso tvi it iitineneonennns 882
Dynamic Memoryttt ittt teetneneaneananns 882

HrPPENDIX E
HANSWERS TO THE EXERCISES » = = » « HHS

Chapter I ... it it ittt tietnesnesnennannns 886
Chapter 2. ... ittt ittt tieteeenesesosssnssnennennes 886
Chapter 3. .. ittt ittt ittt ttneenseeonneennesannas 887
Chapter 4.ttt ittt iieineeeeeeesnesnennennas 887
Chapter 5. ... it i i ittt tietneanesnennennnnnns 887
Chapter 6. ittt ittt nnnneseeaannnnnnns 888
Chapter 7. ... ittt ittt teetneeeeseesnesnennannns 888
Chapter 8. ... ittt ittt tieeineensenssnesnennennns 888
Chapter §. ..ottt ittt it tittanteeeeaannnnnnns 888
Chapter 10.ttt ittt tieneeeesnesnennannns 889
Chapter Il ittt ittt iieeneanennennennns 889
Chapter [2. i i it i ittt ittt annnnnnns 889
Chapter I3 i i i it it ittt ieesnennennannns 889
Chapter 4. i ittt tietneenesnesnennennns 889
Chapter I5. i i i i i ittt ittt 890
Chapter 16.ttt ittt tietnesnesnennennns 890
Chapter 17 ittt ittt iteeneesesnesnennnnnns 890
Chapter I18. i il i ittt ennnnnnns 891
Chapter 19 ... i i i i it it ittt teesnesnennannns 891

Chapter 20. ittt ittt ittt tietneenesessosssnssnennnnnns 891

Contents xxxiii

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

APPENDIX F
C++ KEYWORDS s« s s s s s s s s s n s s HY=X

HrPPENDIX G
UsSsEFUL TABRLES s s s s s s s s s = » » » HEY5

Y] | - 1 o = 896
IntegralTable i i i i it ittt tneannnns 900
DerivativesTablecciiiiiiiiiiiiiiiii it iinneennnenns 901
Inertia EquationsTable it 901

HPPENDIX H
MoRE RESOURCES s s s s s s s s n » JOZ2

Game Development and Programming., 903
News, Reviews,and Download Sites 904
ENgines. . . o 904
Independent Game Developers i i 904
INdUSErY . . e 905
Computer HUMOTo 905
BooKs . .o 906

TINDEX w s s s s s s s s " n n n mmuwuwmenwnuenwss 3O7

xxxiv Letter from the Series Editor

_lJ_I_q_I_I_'Eruj_P_‘—'_‘l_l'_'ghﬁl—l—rﬁ_“—'_':_

LETTER +FROM THE
SERIEsSs EDi1ToR

Game programming has become serious business! With the introduction
of the Microsoft Xbox, Sony PlayStation II, Nintendo GameCube, and
Nintendo Game Boy Advance, we see that there is no slowing down of
the gaming market in sight. Moreover, programming games on the PC
and on consoles is becoming more and more a unified approach. The
Xbox is nothing more than a really, really, really, REALLY, fast PC!
Hence, as a newbie game programmer interested in learning either PC
or console game programming, a good place to start is the PC and move
on from there. Game Programming All in Oneis an ambitious lead into
game programming.

As the series editor, what I wanted was a book that started from ground
zero and taught C++, Algorithms, Data Structures, Game Programming,
and DirectX, culminating in something simple like an arcade or action
game—that’s the theme of this book. Granted it’s literally impossible to
cover all those topics in fewer than 3,000-5,000 pages in complete fashion,
but we think that Game Programming All in One has definitely come close to
being an all-in-one guide that a complete beginner can pick up to learn
game programming.

So if you’re a beginner interested in becoming a game programmer, or
you just want to know what it’s about but don’t want to spend hundreds of
dollars on books covering all the specific game programming topics then
this is a great book for you to start with. Although having programming
experience is a big plus, this book assumes you have none and teaches C++
along with Windows programming before getting into the game program-
ming material. Once there, you’re not going to learn 3D graphics and how
to make Quake or HALO, but you will learn about the fundamental
processes and techniques to create a solid 2D game; from there it’s up to
you if you want to keep on learning and move to ISOmetric 3D games,
Multiplayer Games, or full 3D Games—the choice is yours, but with Game
Programming All in One you will have a solid foundation to start from.

Letter from the Series Editor XXXV

_':.'_l—u—r'—l—‘—'E'_Ll—‘l—l -——|_|—-—|_.—F”_”15|—l—|_p—'—|_'_

Additionally, the coding habits you will learn in this book are excellent.
The author Bruno Sousa is one of the best coders I have seen; his code is
clean, functional, and very object-oriented, thus you will begin learning
good habits from day 1 rather than bad ones which can kill you when
creating games that easily near the 1 million line mark these days.

So without further ado, get your compiler set up, open this book wide,
and take your time reading and exploring for I really do envy the journey
that you're about to go on. Learning game programming was probably
one of the most interesting and exciting times of my life, and I can only
expect you will have just as much fun or more—since when I learned I
was getting excited with 4 colors and 8 X 8 bitmaps!!!

Sincerely,

s Lovete

André LaMothe
Series Editor
CEO@xgames3d.com

Introduction

l still remember my first trip to the arcades. I was four years old, and my father
took me to a local fair where I played a racing game. I instantly fell in love with
games. I wanted to play them; I wanted to design them.

At the age of eight I started programming my old ZX Spectrum with 64KB of mem-
ory and an old tape player, and I had fun like I never had before.

It wasn’t until the age of 13 that I seriously started programming games. Reading
anything I could get my hands on about programming, I managed to do some
VGA (if you are young, you probably don’t know what VGA is) games in Pascal and
evolved from there.

When I first logged on to the Internet, in 1995, if I'm not mistaken, I found a
whole new world. Among other things, it housed a collection of sites about game
programming with enough information to last a lifetime. I was amazed.

Today, I do remote programming from Portugal (when will someone put some bucks
on the table and start a game company here?) and work on tools for programmers.
I've also decided to go to college to pursue a Mathematics and Computer Science
degree at the Universidade do Minho here in Portugal. I hope I can finish it.

This book is a collection of my own experiments during these last years. I hope it
will help you get started as a game programmer. But don’t finish this book and stop
there; there are loads of other good books and sites you should read to continue
your career. This book is just the tip of the iceberg.

I've created an Internet site for this book where I include errata, updated source
code, and more information regarding this book. You can visit it at http://gpaione.
kyuumu.com.

Also, don’t hesitate to e-mail me (bsousa@kyuumu.com) if you have any questions
about the book, the source code on the CD, or just general questions about game
development. Of course, if you just finished your game and want someone to play
it, don’t forget to send me an e-mail so I can try it.

Also, if you want a live chat, you can probably find me in GameDev’s IRC channel
(http://www.gamedev.net/). Just ask for Akura.

Introduction xxxvii

_I:I,—lfq_l_lﬁ,_d—l_ll——u—-—u—r”_ﬂgl—ﬂ_p—'b

What You Are Going to Learn

This is an ambitious book; it covers all the elements to get you started in develop-
ing your own games, including:

® The basics of C++ programming
® C++ techniques and practices

= Windows programming

= The DirectX 8.0 API

= Game programming techniques

And a little more . . .

How This Book Is Organized

This book is divided into four parts. Each relies on the preceding part to explain
the concepts. If you already know C++ programming, you can just skim through the
first part and move to Parts 2 and 3, but if you are a beginner, I suggest you read
this book linearly, from start to finish.

Part 1 covers C++ programming. You will learn the basics and the most important
aspects of C++ programming, such as text input and output, file manipulation, and
pointers. You will also develop two simple text games.

Part 2 explains Windows programming and DirectX. It covers the basics to get your
Windows application running and covers in detail the three main components of
DirectX: DirectXGraphics, DirectSound, and Directlnput. In this part, you will
build Mirus, the game library you will be using in this book.

In Part 3, you will see many game programming related fields, such as mathemat-
ics, physics, and artificial intelligence. You finish this part by building a breakout
type of game.

Part 4 contains the appendixes, where you can find information about using the
CD-ROM, the debugging application, the chapter exercises’ answers, and some ref-
erences you may want to check while you read the book.

Don’t forget to check out the CD; it contains loads of cool tools and all the source
code included in the book (which should save you a lot of time). You will need your
own copy of Microsoft Visual C++ to compile the source code from the CD-ROM.

This page intentionally left blank

PART ONE

C++
FPROGRANMING

—r'—'_‘———l_,_l—ll—ﬂ—'_,—.':' g == r_-T-_j.._._.._,____,—'_l_.H—

UJL‘—LA 'ﬁbfm,—l; LFLJJ—'_|—|—,_| = & P — -—]'_""—-LJJLI_.J

1 Introduction to C++ Programming

2 Variables and Operators

3 Functions and Program Flow

<4 Multiple Files and the Preprocessor
5 Arrays, Pointers, and Strings

b UClasses

7 Developing Monster

8 Streams

9 Basic Software Architecture HJ

i

‘/j’

="

Re’orsY

WMM

—"L_J_|_'_____,,_ i L-.'.—u——"! !J_n 1 ‘:—H—q—r‘—l__,—-—‘_,—‘-l—

._IJ_'J—"_‘[—| ?'—q N —— ;_l_-—'_‘—lﬂ nl ‘——‘l_l_l_l-{-__. l_rA’JLL_l_

CHAPTER |

INTRODUCTION
TO C++
FPROGRANMING

4 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

WClcome. This is the first chapter, so I hope you have a big, tasty cup of cof-
fee. Got it? Good, let’s get on with it.

Learning how to efficiently set up and use Visual C++, knowing how C++ programs
work, and being able to deal with errors and warnings will save you a lot of trouble
later, so let’s go over all those things now.

Some of the code in this chapter may sound a little confusing at first because you
don’t have any C++ base. This is natural since it is impossible to learn the C++ lan-
guage in just one chapter. If you are having trouble grasping the concepts, don’t
worry, they will be explained in much more detail in the following chapters.

Why Use C++¢

I've chosen C++ for this book for several reasons. C++ is a popular programming
language that is easy to work with on big projects and is used to build independent
components and more. Let’s go over some of these advantages to prove this choice.

As you may have heard, C++ is an object-oriented programming language, but what
does this mean? Object-oriented programming (or OOP) is a programming para-
digm that has proved to be very successful. The idea behind it is to think of mod-
ules as objects, it lets you incorporate the attributes and methods of things into
working objects. OOP and other programming paradigms to aid your code con-
struction are described in Chapter 9.

C++ is a low-level language—it works at a very low, or near, level with the computer.
The lower level a language is, the faster it will perform, but the more cryptic it will
become. At this time, Assembly (do not confuse with Assembler, which is the
Assembly compiler) is the lowest language available. There is also C (the predeces-
sor to C++), which is a bit lower level than C++ but higher level than Assembly;
however, it isn’t as OOP-friendly as C++. Various other higher languages are avail-
able, such as Pascal, Delphi, Visual Basic, and so on.

C++ is similar to its predecessor. Apart from offering more capabilities than C, like
classes and polymorphism, it is compatible with C, which means that a C++ com-
piler can compile existing C code without any problem. You can also use C and
C++ code in the same program.

Setting Up Visual C++

Before digging your head into programming, you need to set up the programming
environment, in your case Visual C++. Visual C++ is the most popular compiler
used in game programming and therefore the choice for the book.

If you run Visual C++, your screen should look like Figure 1.1. To compile pro-
grams in Visual C++ you need to create a project and the source files.

Creating a Workspace

I presume you are reading this book comfortably sitting in a chair, in front of a
desk probably with other books and papers scattered around and with a computer.
That is your workspace. In development, the equivalent to that workspace is the
Visual C++ workspace, which holds everything you work with. The books and
papers are the projects, the pages your source files.

You will be using one workspace in each chapter that contains all the projects and
files related to that workspace.

To create a workspace, go to the File menu and select New. Doing this will display a
dialog box with various tabs. Select the Workspaces tab and specify the name of the
workspace. You can change the default location for your workspace. It is good to

=l8] Figure 1.1

File Edt Wibw bert Projt Duld Todk Wndow Felp . .
(== R = -1 =l w Microsoft Visual C++
Al
GPP&CM‘C!HCE.

:'I1 =

| -
_-Eﬂmnxh.mlm.rulkmuru:ﬂuj 1 ®

| fesss

6 1.

Introduction to C++ Programming

ﬁl_n—"l_”_l_‘L

specify a base directory or hard drive for all your workspaces so that you can easily
find them if you need to.

Create the workspace you can use later for your project. First, go to the File menu
and select New. Now you need to name the workspace, go ahead and use what you
prefer, but try to use a name that exemplifies what the workspace is for. I'll use
Chapter_01 for the workspace name since this workspace will contain all the projects
of this chapter. The last thing you need to do is to set the base directory. You can
use the default one or choose your own. Let’s create the workspace in the root of
drive C in the Book directory, to do this, just type C:\Book.

And that’s it, you have the workspace ready for the project that you will create next.

Creating Projects

Visual C++ offers various types of projects, and during the course of the book you
will use three of them, but for now you will use the Win32 Console Application pro-
ject. A console application is a program that usually resembles the old DOS/UNIX
text interface. This is the best application type in which to learn C++ because it
doesn’t need any type of window setup.

To create a Win32 Console Application, or any type of project, you need to click on
the File menu and select New. A dialog box similar to the one shown in Figure 1.2
will appear.

rew 2x]] Figure 1.2
Files Projects | Workspaces ‘ Other Documents | : Creating a Wln32
i ATL COM Appfizard Project name: . .
3 D evStudio Addin Wizard |D1 Hella all pou happy pecple Console Apphcatlon.

I54P| Extension Wizard

? M akefile

2 MFC ActiveX Contralwizard
5] MFC Appwizard [dll)

MFC Applifizard [exe]

T Utility Project

S| win32 Application

:I Win32 Conzole Application
ﬂ Win32 Dynamic-Link Libramy
i] Win32 Static Library

Location:

[\Game Programming A1l in One J

* Create new workspace
{0 bdr
r

FPlatfarms:
|v Win3z2

Cancel

Setting Up Visual C++ 7

sy = [—= LI = —1Lr],

You need to select the Win32 Console Application type from the list of available
project types. You can check Table 1.1 for a description of useful projects for game
programming. After you have done this, you need to set up your project.
Throughout the book, each project will be named with a program number and the
description of the project, like 01 Hello all you happy people for this project. You
may see that there are a few other options in that dialog box: the directory selec-
tion and the workspace information. You can ignore the platform type because in
Visual C++ you are only allowed to create Win32 applications. You can specify
another directory for your project as you see fit, but let’s leave it as it is since it will
use the default workspace directory to create the project.

You are now ready to create the project. Click OK and you will see a new dialog
named Win32 Console Application - Step 1 of 1. This dialog is where you set the

TABLE |.1 Useful Visual C++ Project
Types for Game Programming

Project Name Description

MFC AppWizard (dll) Creates a Microsoft Foundation Classes (MFC) dll.

MFC AppWizard (exe) Creates a Microsoft Foundation Classes (MFC)
executable. This project is extremely useful for tools.

Win32 Application Creates a normal Win32 Application. This is the
project type you will use later to develop Windows
applications.

Win32 Console Application Creates a DOS/UNIX-like application.You will use
this project type to learn C++ programming.

Win32 Dynamic-Link Library Creates a dynamic dll library. This project type is
particularly useful when you want to create a
collection of classes and functions that are included
in the executable at runtime.

Win32 Static Library Creates a static library. The same as a dynamic
library but all the code is included at compile time.

a8 1. Introduction to C++ Programming

_ljl—q_rl—lEr”_[rl—l_.—l_l—-l_-l

L — =L re

initial attributes of the project. You will use an empty project for all the remaining
projects you do. There are advantages to using some of the options given in this
dialog but I leave that for you to find out.

The project is created and ready, what more do you need? Files. You need to create
a source file in the project you just created.

Creating and Adding Files

Now that you have your project, you need to add new files to it. You can do this by
selecting the menu Project, Add to Project, New. This will display a dialog similar to

the one shown in Figure 1.3.

As you may have already figured out, you will be using a C++ source file from the
available file types. There are two kinds of files you will be using during the course
of the book— C++ source files and C++ header files. I will go over the differences
between them later, for now let’s use a C++ source file and specify its name; as with
projects, you will use a terminology throughout the whole book to maintain some
consistency. Source files will be identified by the program number and by the
objective of the file with the file extension .cpp so that Visual C++ identifies the file
as a valid G++ source file. Name your file 01 Main.cpp, 01 from the program num-
ber, and Main because this is the main, and in this case, the only part of your pro-
gram. As you progress, you will separate the functionality of your program in
different files; for example, a part of the program that manages the game sound

e

Files | Projects ‘ Other Documents]

] Active Server Page
Z‘ Binary File

£ Bitrnap File

[CC++ Header File
C++ Source File

e Cursor File

| @] HTML Page

j |con File

i : Macro File

T Resource Script
ﬁ Resource Template

Teut File

21x|

¥ Add to poject

|EI1 Hello all you happy people j

File name:

|01 Mairf

Lacation:

E:\Game Programming Al in One J

Cancel

Figure 1.3

Creating a new
source file inside a
project.

Your First Program: “Hello all you happy people” 9

sy = [— LI = —1Lr],

system would probably be called 04 Sound.cpp. More details on correct file naming
are given in Chapter 9.

As you can see, you can also specify the location of the file like you could with the
location of the project. For now, leave the default location chosen by Visual C++,
which is usually the project directory.

Do you remember the talk about workspaces? Well, if you had various other pro-
jects in your workspace you could select to which project you would add the new
file, but since you only have one, leave it like that.

You have your project and your source file. What is missing? Source! Coming right
up sir!

Your First Program: “Hello
all you happy people”™

It is a general rule of thumb that when learning a programming language, one
should start with a simple text message output. You will do the same by creating a
program that outputs "Hello all you happy people” to the screen.

Making such a simple program helps you focus on how C++ programs work without
dealing with all the language-specific keywords.

Make sure you have it all. First create a workspace for the projects, and then create
a project for your program. After this is done, add a new source file to the project.
Now you’re ready to type in the listing.

Type the following code into the file you created earlier and then press Ctrl+F5 to
run it. I will discuss running and compiling programs in a bit, but for now just do it.

/* '01 Main.cpp' */

/* Input output stream header file */
: finclude <iostream>

1

2

3

4

5:

6: /* Start */
7: main (void)
8: {

9 std::cout << "Hello all you happy people" << std::endl;
0 return 0;

1

10:
11: }

10 1. Introduction to C++ Prugrammiﬁg

ﬁl_n—"l_”_l_‘L

If all went well, you should see that a DOS look-alike window opened with the mes-

sage "Hello all you happy people", as shown in Figure 1.4.

Let’s analyze the code line by line to bet-
ter understand what is happening.

In line 4 of the program is #include
<iostream>. The #include word is a pre-
processor directive, on which you will
dig the details later; for now, just think
of it as a way to include code from
another file in your own file, in this case,
the code in iostream. You use < and > to
encapsulate the header file, so you tell
the compiler to look on the default
include directory. If you use quotation
marks instead of < and > it means that
the compiler will use the project directory
to look for the header files.

After including the iostrean file, you
have access to the functions, variables,
classes, and namespaces in it. All this
will be described later so for now
assume they are pieces of code that
enable you to do certain things. If you
check, the iostream name can be
divided into io and stream. io means

LI LI

CAUTION

Header files usually have the .h
extension.There are two jostream
files, one with the .h and one without
it. | use the one without the .h
because it is the ANSI/ISO C++ stan-
dard. Using the iostreanm file instead
of the iostream.h file makes your
code compatible with the C++ stan-
dards, thus, supported by many dif-
ferent compilers.

1 1

NOTE

The default include directory is usu-
ally X:\VSDirectory\VCl\include

where X is the drive and
VSDirectory is the directory where
you installed Visual C++.All the C++
built-in headers are in that directory.

—

urce',Chapter_01%01 Hello all you happy people’|
all you happy people

Figure 1.4

Output from your
first C++ program.

Your First Program: “Hello all you happy people” 1

sy = [—= LI = —1Lr],

Input/Output and a stream is the way you can communicate with the computer
files, screen, keyboard, and more. Almost every file or function uses this type of
abbreviation to tell you what they are for.

Now you need to create a function from where the program will start. All C++ (and
C for that matter) programs start execution from the function main in line 7. When
you try to run a console program, the operating system will call the main function.
You are defining main in your program as accepting no arguments, or more cor-
rectly, no command-line arguments. You do this by enclosing void, which means
there are no parameters, inside the parentheses following the main keyword. I will
go over function creation, arguments, and more in the next couple of chapters.

If you look closely you will see that the code is between the curly braces in lines 8
and 11. The curly braces specify a code block. All functions, loops, and a couple of
other C++ control keywords use code blocks to define their scope. All code
included between the braces belongs to the main function. You can have nested
code blocks, but you always must have a closing brace for each opening brace. I will
explain code blocks when I deal with functions, so if you haven’t understood it
well, don’t worry, it will all make sense later.

And you have reached the main part of the code, the actual message output. Let’s
go over line 9 slowly so you don’t miss anything. The code line starts with std::cout;
this is the standard console output stream, or in English, the screen. Again if you
divide it you get std and cout. std for standard namespace and cout for (c)console
(out)output. To be able to use any member or method of the std namespace you
need to use the :: token to specify that cout belongs to std. Any method or member
that you will use from the std namespace will use std:: and the member name.
Before checking the << operator, let’s go over strings and C++. Strings in C++ can be
used in three different ways—arrays, pointers, and hard coded—1I will go over
strings using arrays and pointers in Chapter 5, “Arrays, Pointers, and Strings”; that
leaves you with hard coded strings now. Hard-coded strings are a set of characters
defined in code. Strings must be enclosed in quotation marks like in line 9, in this
case "Hello all you happy people”.

How do you show this string on the screen? Use the << (insertion) operator. As the
name says, it inserts whatever is on the right side of it, in your case, the string, into
whatever is on the left side, std::cout.

You also inserted std::end1 line to the output stream. This will create a new line. If
you didn’t want to use this, you could include the new string character \n to intro-
duce a new line like:

std::cout << "Hello all you happy people\n";

12 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Which would produce exactly the same effect as before.

Token. A token is the
smallest language
statement a C++
compiler recognizes.
The tokens can be

You can see that at the end of line 9 is the semicolon token
;. This token tells the compiler that the line of code ended.

Each code line must end with the ; token. A code line

defines one statement, but it doesn’t mean that it is the used for identifiers,
entire text line. A single text line can have multiple code kezw::‘ds, AR
and other

lines if you terminate each statement correctly, usually with
the semicolon token.

statements.

To finish the program, you just need to return a value from your main function in
line 10. You usually specify the return type of a function using the type keyword
before the function name, for example, int Function (void). This line of code
would declare a function nicely named Function that returned an integer. In your
main function you haven’t specified the return type but by the ANSI/ISO C++ stan-
dard, the main function as it is needs to return an integer. To return a value or vari-
able, you need to use the return keyword, followed by the value you want to return,
in this case, 0 and ending the code line with the ; token.

So you have your first C++ program done, it wasn’t very hard was it? You will learn
how to do accomplish other tasks during the rest of the book, and many of the
concepts briefly explained here are also covered more in-depth in the following
chapters.

Structure of a C++ Program

When you use an integrated development environment (IDE), such as Visual C++,
you see only two things: the source and the final executable. There are various
steps to create a C++ program. From prototyping the program to the final exe-
cutable you need to go over various development stages. The entire development
process can be seen in Figure 1.5.

Let’s go over each phase in detail before moving on to errors and warnings.

Program Design Language

The first step in development is design. To efficiently develop your code to do what
you want, you should design or prototype it first. This step is the most important
step of the development process. It is here that you test the logic of the program.

jl_u_r'—l—l_IF

Structure of a C++ Program 13

IJ—|I_I-——|_|—-—|_.—"”_”‘|5|—I—|_F—|—|_'_

—>|
—>

’ Program Design Language ‘4—

l

|

Edit source code

|

l

Compile

|

Final executable

Figure 1.5

The development process.

I usually use something called Program Design Language (PDL) or, more tradition-
ally, pseudo code. What you do is use limited (shorthand) English (or whatever lan-
guage you are most comfortable with) to explain by steps how the code works.

19 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Take a look at the pseudo code below to get the general idea.

for each RacingCar do
Begin
Move car to next position
Check for collision with other car
Handle all physics reactions
Draw car on screen
End

After checking the above pseudo code, you probably have a good idea of what that
routine must do even if you don’t know how to do it.

If you take that pseudo code to different programmers who use different program-
ming languages, they can all implement the above routine using whatever program-
ming language they prefer. If you had designed that routine in C++, only G++
programmers would be able to understand it.

Try to be specific and consistent in your pseudo code. Indent each line correctly
and start with begin and end statements to differentiate things.

Program Source and Compiling

A simple program like the one earlier needs a single file, but this isn’t always the
case. Can you imagine a 100,000 line program in just one file? That would make
the life of any programmer the living representation of hell. You will have various
files that need to be compiled into objects by the compiler. You can compile indi-
vidual files in Visual C++ by right-clicking in the left menu on the source filename
and selecting Compile XYZ.cpp, where XYZ is the name of the file, from the drop-
down menu. This will create a file, in case you haven’t changed the project settings,
in a sub-directory of the project Debug, named XYZ.obj. Again, XYZ is the name of
the file. These object files are compiled code but can’t be used just yet.

You can also compile individual files by using the Build menu or by pressing
Ctrl+F7 if they are selected from the file list on the left.

For you to create a correct final executable, you should have an object file for each
source file containing the latest code used.

Objects and Linking

So you have the objects. Now what? To create an executable, you need to link all
the objects you created into an executable; this step is done by a linker. The linker

Structure of a C++ Program 15

JLu_r‘l—._Fdl'_,'—u—._,—l‘”_ﬂEI_ﬂ_p—[

takes all the objects created in the compiling phase and links them together, with a
couple of more default C++ objects to create a final executable. This is a very sim-
ple step, and you can do this either by selecting Build XYZ.exe from the Build
menu or by pressing F7 in Visual C++. This tells Visual C++ to build the executable
by linking the objects. One nice thing about Visual C++ is that it identifies which
source files were already compiled and which weren’t and compiles the files
needed for this operation to be successful. You will rarely compile individual files
and then link them. You are using a very sophisticated piece of software, so Visual
C++ gives many benefits to other compilers, and the build process can be used to
both compile and link the files.

Executable

Two types of executables exist: debug and release. A debug executable is usually
slower and bigger than a release executable because it contains a lot of debug
information and extra calls. The debug executable is the best kind to test the pro-
gram and debug it. Debugging is basically trying to find and fix all errors, even
during runtime. More information on debugging using Visual C++ can be found in
Appendix B, “Debugging Using Microsoft Visual C++.”

To specify what type of executable you want to work with you need to go to the
Build menu and select Set Active Configuration. This will show a dialog similar to
the one in Figure 1.6.

You can run the executable for testing inside Visual C++ by either selecting Execute
XYZ.exe from the Build menu or by pressing Ctrl+F5.

If all is working fine there and are no errors in any of these stages, you have your
final executable.

Set Active Project Configuration

Project configurations: oK. Selecting the

Cancel

2| x| Figure 1.6

i

executable type for
the current project.

16 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Commenting

A comment is a piece of text that the compiler will discard so that it has no effect
on the code that is compiled. You have seen some comments even if you didn’t
know what they were.

A comment must be between /* and */. A comment can appear on part of a line,
an entire line, or various lines, as shown in the following code:

/* Calculates Cosine (Single 1line) */

Vector = Vector / Vector_Length; /* Normalize Vector (Part of Tine) */

/*

Function name : PrintNames ()

Description : Prints the names of all players in server

(Multiple lines)

*/

Each comment must start with a /* and end with a */. Nested comments are not
recommended because most compilers, including Visual C++, will generate an
error, for example:

/*

/* Print names */

(Nested) */

would generate an error since (Nested) would be compiled (or at least try) generat-
ing an error and the compiler would also complain about an extra */ in the code.

Commenting

® Use comments to explain harder or somehow cryptic code.
® Use comments to enter notes about the code.

m Use comments to hide code you don’t want to compile, but you
don’t want to delete either.

= Don’t use comments to literally explain what each line of code does.

m Don’t use cryptic or code language to explain concepts when mak-
ing code notes or explanations.

Catching Errors 17

sy = [—= LI = —1Lr],

Catching Errors

Before being programmers, we are humans, and as such, we are condemned to
make mistakes. Therefore, learning to use Visual C++ to rapidly identify and fix the
errors is crucial.

Type the following code into a new project and see what happens:

1. /* '02 Main.cpp' */
2:
3: /* Input output stream header file */

4: ffinclude <iostream>

5

6 /* Start */

7: main (void)

8: {

9: std::cout << "Hello all you happy people"” << std::endl
10: return 0;

If you try to run the program you will get two errors in the output window. Before
going on, the output window is the window in Visual C++ that shows what is happen-
ing or happened while compiling and linking the program. You can see the output
window for the program above in Figure 1.7.

The following is the complete output from the compile process:

Compiling...

02_Main.cpp

E:\..\Chapter_01\02 Errors\02 Main.cpp(10) : error C2143: syntax error : missing ;
pefore return

E:\.\Chapter_01\02 Errors\02 Main.cpp(1l) : fatal error C1004: unexpected end of
file found

Error executing cl.exe.

02 Errors.exe - 2 error(s), 0 warning(s)

.
= Cenfiguratian: 07 Errors - Windd Debog - F|gure |.7
AlConpsling

0? Hain epp

E: “Sourca~Chaptar_01-02 Errors~02 Hain.cpp{l0) arror C2143: syntax srror missing ':' bafore T

E: “SnurceChapter 01402 Errorss0? Hain F.p:';[H] faral srror CI004: urnexpeoted end of file fom The OUtPUt WmeW

-

[, Bt {Towbug), Fisedin Filea 1), Fisdlin Pl 2 f] 4| | v errors.

Error executing cl exe .
02 Errors axe —= 2 error{s), 0 warning(s) | Show’ng the Program

18 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

If you check the output window carefully you will see valuable information. The
first line tells you what project and executable type you are trying to create; in this
case the second program of the chapter in debug mode. After that the output win-
dow shows you what is happening; in this case, trying to compile the 02_Main.cpp
file.

Now the errors, two of them to be exact, are clearly shown and a lot information
on them is given. The first part of the error message is the file that contains the
error, followed enclosed in parentheses by the line where the error occurred. You
can double-click the error message and you will be automatically directed to the
file and line where the error occurred. After that you have the error code, which
you can look at for more information on the Microsoft Developers’ Network
(MSDN), which you will do in a bit. In the end, a small description of the error is
given.

So, in relation to the code, what does this mean? For the first error it means you
have missed a ; before return, or just after the string declaration. As you have seen
before, each code line needs to end with a ;. You can see this because of the error
description, or if you want more information you can try to find information on
the error code in MSDN.

C2143 Error Code in MSDN
syntax error : missing token| before token2

()

The compiler expects certain language elements to appear before or
after other elements. For instance, an if statement requires that the
first non-whitespace character following the word if must be an
opening parenthesis. If anything else is used, the compiler cannot
“understand” the statement.

()

Catching Errors 19

sy = [—= LI = —1Lr],

You can see the error in the 02_Main.cpp file in line 9. Now you are asking, if a ; is
missing before return 0, that is, after the message declaration, why does the error
show line 10 instead of line 9? Well, since you are missing the ; token, you have
never specified the end of the code line where you use cout, so the compiler treats
both lines as just one code line. If you include the ; after "Hello all you happy
people" you specify the end of the code line and eliminate the error.

The second error is similar to the first one. Remember that for each opening curly
brace you need a closing one to define a code block? Well, that is exactly what is
missing here, the closing curly brace. Visual C++ reports an unexpected end of file
found error because the compiler was expecting the code block to end and it never
did. You can span code through various files, but you can’t span code blocks. Each
code block must start and end before the end of the file or the declaration of
another function. You will just add a } after return, or in a new line after return to
make the code easier to read, to fix the error.

If you were paying attention, you may have noticed that those errors have different
grades. The first is a normal error and the second is a fatal error, but what is the dif-
ference between them? Well, when you have a normal error, the compiler still tries to
compile the rest of the file showing all the following errors. When you have a fatal
error, the compiler is incapable of continuing the compile process because of the
error.

There is just one more error type you should go through before ending all this dis-
cussion: linking errors. Linking errors are errors that occur during the linking phase
and usually happen due to missing object files or duplicate declaration of func-
tions. Take a look at the linking error that follows:

LINK : fatal error LNK1104: cannot open file "object.obj"

Visual C++ reports linking errors similarly to compiling errors, the main differ-
ences are that linking errors don’t have file or line information, and that the error
codes are identified by the LNK prefix. The rest is exactly the same, it reports it as an
error and gives the error code and a small description of the error. In this case, it
means that the compiler can’t open, or find, the object.obj file. This file is one of
the files needed to build the final executable, and since the compiler can’t find it,
it just stops the linking phase and shows the error.

20 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Warnings

A warning is a way the compiler tells you something may be wrong. It doesn’t mean
it will cause an error or problem, but where there is smoke, there is fire! So, know-
ing this, warnings shouldn’t be ignored. Type the following code in a new console
project and I will go over the warning in a second.

/* '03 Main.cpp' */

/* Input output stream header file */
: f#include <iostream>

: main (void)
{
std::cout << "Hello all you happy people" << std::endl;

1

2

3

4

5:

6: /* Start */
7

8

9

0: }

10:

This program will compile, link, and produce a final executable. You can even run
it and you will not notice any difference, except on the output window. You can see
that a warning is reported to the output window.

e:\..\chapter_01\03_warnings\03_main.cpp(5) : warning C4508: main : function
should return a value; void return type assumed

A warning report has the exact same structure as an error report. You have the file,
the line, the warning code, and the warning description. In your case, your warn-
ing is because you aren’t returning a value like you should. This warning will rarely
cause you any trouble, but some others may. To solve this you need to add return

0; as you had it before.

What can cause a warning? Just about everything, using different type variables in
operations, compiler options, forgetting a token or keyword, and so on.

What should you do when you come across a warning? Fix it as soon as possible to
prevent problems like this from happening.

But what can you do when you can’t get around warnings and you really don’t want
them to show in the output window? You must disable that warning by using a
pragma directive. You should use the following code just after the #include
<iostream> to disable the C4508 warning.

fipragma warning(disable:4508)

Duestions and Answers

21

You use the pragma keyword preceding the
pre-processor directive # to let the compiler NOTE
know you will be using a pre-processor direc-

tive. Following, there is the type of pragma e e, g e el

directive you want to use, in your case and usually change between sys-
warning and then specifying the parameters tems and compilers.

for it, since you want to disable the warning
(C4508 you use disable:4508 in parentheses.

Pragma directives are compiler

_ aa

Summary

If you haven’t skipped any of the pages, you should be confident on the choice of
C++ as your programming language. You should also be confident about the power
of the Visual C++ compiler and why it was chosen for this book. And you should
know how to use the Visual C++ compiler well enough to create your own projects
and source files.

You now know how a C++ program works
and its structure; you should also be able |
to handle errors and warnings without NOTE

much hassle. Whenever you are having trouble

. . with Visual C++, try looking at the
This was a rather simple, but, at the same » XV 8

. . help.Visual C++ comes with a huge
time, complicated chapter. I went over help system (part of MSDN) which
some basic concepts in-depth and some

more advanced C++ concepts briefly. Make
sure you understand how Visual C++ and
C++ programs work so that you don’t get lost
in the next couple of chapters.

can be used to your advantage.

OQuestions and Answers

Q: If Assembly and C languages are faster than C++, why use C++ for game
programming?

A: With modern compilers, C++ code can be as fast as C, and nearly as fast as
Assembly. C++ offers some advanced capabilities, such as classes, polymorphism,
and operator overloading to name a few, that offer you a better and easier way to
build your programs and games.

22 1. Introduction to C++ Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Q: When I open the executable I created in Notepad, I only see a lot of gibberish.
Why?

A: When you open an executable file, you don’t see C++ source code, or even any
human understandable code. What you see is code the operating system uses when
using your program.

Q: What do I need to give a friend of mine so that he can run a program I wrote?

A: For a friend of yours to be able to use your program, you need to give him the
executable generated by your compiler. More advanced programs may also need
data from other files.

Q: Is it possible to make Visual C++ create executables for other systems, such as
Linux?

A: No. Visual C++ outputs only executables for the Windows family of operating sys-
tems. There are a couple of different Windows executable types, but it can’t be
used to create executables to other operating systems.

Q: Can I completely disable warnings in Visual C++?

A: Yes, even if you shouldn’t, you can disable warnings by going to the Project
menu, selecting Settings, and selecting the C/C++ tab. There you can change the
warning level to None from the drop-down combo box.

Q: Why do I need to create a project for each executable I want to build? Wouldn’t
it be easier to have a process of compiling a source file into an executable without
projects?

A: Visual C++ forces you to build projects for one simple reason. If you had a
source file, how would Visual C++ identify it as being a console application or a
Windows application? This is why you need to create projects, so Visual C++ knows
which type of application it should create.

Q: What are classes, polymorphism, operator overloading, and all that mumbo-
jumbo you talked about?

A: Classes are a C++ way to encapsulate functions and variables to objects.
Polymorphism and operator overloading are topics related to classes, which I will
cover in detail in Chapter 6.

Exercises 23

sy = [— LI = —1Lr],

Exercises

1. How do you create a Win32 Console Application in the D:\Book\Hello
directory?

2. What is the iostream file?
3. What is wrong with the following block of code?

finclude <iostream>
int main (void)
{
cout << "What is wrong with this ? << endl;
}

4. What will be the output of the following program?

f##include <iostream.h>
int main (void)
{
cout << "Line 1" << endl << "Line 2" << "Line 3" << endl;
}

5. What are the three different errors Visual C++ reports to you?
6. Fix the following code:

f#Finclude <iostream>
int main (void)
{
cout < "What is wrong with this ?7;
}

7. What type of header should C++ programs use, iostream or jostream.h? And
why?

8. What is wrong with the following program?

finclude <iostream
int main (void)
{
cout << "What is wrong with this ?"
}

24 1. Introduction to C++ Programming

[=" L = =, = =

9. What s a linking error?
10. What happens after the compiling process?
11. What is a possible source for checking out compiler error codes?

12. Develop a Win32 Console Application that shows the “Welcome to my world”
message and returns the integer 5.

13. Try to develop a program that asks for the user name and then shows it (tip:
use cin to get input from the user).

14. Try to make the first program you develop include a new line before and
after the message is shown on the screen (tip: use the end] manipulator).

15. Try to compile and link your first program without the use of the Visual C++
Integrated Development Enviroment (tip: use the executables in the BIN
directory where you have installed Visual C++ to).

T T

== e T e

CHAPTER 2

VARIARERLES
AND
OFPERATORS

26 2. Variables and Dperatnré s

I omputer programs, especially computer games, need a way to store different
types of data, from players’ names, to scores, to lives. Programs also need a way
to modify and operate on them. C++ enables you to do this with variables and oper-

ators. Throughout the rest of the book, you will use various types of variables and

operators, each with its own uses.

On a simple definition, a variable is someplace where you can store information in
memory. Let’s go over how variables and memory interact.

Variables and Memory

Just in case you didn’t know, a computer has two types of memory: random access
memory (RAM) and read-only memory (ROM). ROM is the part of the memory

that isn’t erased when the computer is shut

down. It is usually very small and is used
for storing the BIOS.

The memory you are interested in is the
RAM. RAM is located in chips usually
called SIMMs (Single Inline Monolithic
Memoaries) or DIMMs (Duel Inline
Monolithic Memories), depending on
the system, inside your computer. In
these days, computers usually come with
64 megabytes (or more) of memory.
Typically, development machines use a
lot more than that.

Information stored in RAM is easily
erased and modified, and maintains its
contents only while the power is on. If
you shut down the computer, it will be
completely erased.

I will talk about memory in terms of
bytes now. A byte is the smallest memory

NOTE

The BIOS, or Basic Input Output
System, is a system that allows the
software communication with hard-
ware.The BIOS has many functions,
such as the Power-On self test and
booting an operating system from
a drive.

NOTE

1 megabyte (MB) is 1,024 kilobytes
(KB), and 1 kilobyte is 1,024 bytes.
So 1 megabyte is not 1,000,000
bytes like you would suppose but
1,048,576.Those 64MB of memory
are actually 67,108,864 (1,048,576 *
64) bytes of memory.

What Type of Variables Are There? 27

e = = [—= L= —"1r"],

unit you can store in a computer, and it can hold values that range from 0 to 255.
I will talk about bytes, bits, and more on memory manipulation in Chapter 5,
“Arrays, Pointers, and Strings.”

RAM is organized sequentially, one byte after another. For a visual concept take
a look at Figure 2.1.

As you can see in Figure 2.1, each byte of memory has an address assigned to it.
Memory addresses are usually addressed in hexadecimal notation. If you don’t
know how decimal notation relates to hexadecimal, check out Appendix C.

Variables are stored in the computer RAM. Each variable type uses a different
number of bytes, resulting in each holding bigger or smaller values.

You will be using variables for just about anything you want to store, and for each
variable you use, you are using a little bit of memory. You will learn later how to
allocate and de-allocate memory, but for now, you will let the compiler take care
of that.

What Type of
Variables Are There?

As you may know already, all the information in the computer is stored in binary
form (for information on binaries, see Appendix C). A binary number is stored as
lots of 1s and Os called bits. As said earlier, a byte comprises 8 bits. Different vari-
ables need more or less memory, thus using the appropriate type for each kind of
data is recommended so that you don’t waste memory.

Some variables are more suited to hold small numbers, other letters, or even store
floating-point numbers. Each of them has different uses, range, and memory
requirements.

Figure 2.1
unsigned short unsigned char short Memory organlzed
sequentially.
23 132 255 1 -34

0x32000032 0x32000033 0x32000034 0x32000035 0x32000036

28 2. Variables and Operators

You usually store three different types of
numbers, and you also have various
types of variables for each type of num-
ber, so you can hold various numbers
with various ranges. You have characters
or letters, which are also stored as num-
bers. You also have integers that are
numbers that have no decimal part, and

NOTE

Any floating-point number can be
represented by a mantissa and an
exponent. For example, the number
12943234.3493 can be represented
accurately by 1,29432343493*107 or

1.2943*107 approximately. This is

floating-point numbers that are num-
bers that have a decimal part and are
stored as mantissa and exponent. You

often referred as scientific notation.
This is the way C++ stores floating-
point numbers, where the mantissa

is the base of the number, in this
case, 1.2943 and the exponent is 107.

don’t need to worry how the mantissa
and exponent are stored in memory
because C++ enables you to use the
floating-point variables as if they were
stored in the normal way.

Check Table 2.1 for the various C++ types, keywords, memory requirements, and
their range.

All integer types come in two forms: signed or unsigned. signed variables can either
be positive or negative and is the default when you create any variable. unsigned
variables, on the other hand, are always positive and need to have the unsigned key-
word preceding the variable type.

Let’s go over some examples of data and see which variable types from Table 2.1
you would use for them.

The single letter A is represented as the decimal number 65 (you can check
Appendix F for a table of symbols and the respective value). If you are just using
the standard letters and symbols, like a, J, L, 4, 1, (numbers can be also be repre-
sented as letters) you only need to use values from 0 to 127. These values are part
of the ANSI ASCII Standard and are the same for all systems and languages, so you
can use only a char. If you want to use some extended characters and symbols that
range from 127 to 255, you should use an unsigned char.

If you wanted to hold the players’ lives you should use an unsigned char. You could
use a short to hold the number of lives, but do you really need the extra byte? An
unsigned char can hold values up to 255, which is more than needed in any game.

If you wanted to hold a year, you would use a short. You could just use an unsigned
char and hold the last two elements of the year, but you have probably heard of the

What Type of Variables Are There? 29

= l——|_|—'—|_.—r|_|_”15I—l—|_|"—|—|_'_

J_LLFI"—'—|_IF

TaBLE 2.1 C++ Data Types

Memory
Variable C++ Required
Description Keyword (Bytes) Range
Boolean bool 1 Oor1l
Character char 1 -128 to 127
Unsigned character unsigned char 1 0 to 255
Short integer short 2 -32,768 to 32,767
Unsigned short integer unsigned short 2 0 to 65,535
Long integer long 4 -2,147,483,648 to
2,147,483,647
Unsigned long integer unsigned long 4 0 to 4,294,967,295
*Integer int 4 -2,147,483,648 to
2,147,483,647
*Unsigned integer unsigned int 4 0 to 4,294,967,295
Single-precision float 4 3.4E +/- 38
floating-point (7-digit precision)
Double-precision double 8 1.7E +/- 308

floating-point

(15-digit precision)

*Integer and unsigned integers are 32-bit values in Windows 9X/ME/NT and they are the same as a
long integer and an unsigned long integer.

Millennium Bug. Do you know what caused that? Exactly, holding just the last cou-
ple of digits of the year.

Now for a floating-point number, you should use a float or a double of course, but
which of the two should you use? You want to store the number 3.141592, which is
rather small and doesn’t have a high precision so you will use a float.

30 2. Variables and Operators

= = |J. %

The millennium bug was caused by dates being stored using
only the last two digits of the year.When you reached 2000,

the computer clock would just go from 99 to 00, without
updating the century (19); that is, the year would change
from 1999 to 1900, which would be great for the real-estate
market, but bad for computers!

You can check the size of any variable using the sizeof keyword. If you want to see
Table 2.1 in code, check out the sample 02_variable Sizes.cpp program on the CD.

Using Variables
in Your Programs

Well, all this mumbo-jumbo isn’t worth a nickel if you can’t use it in a program,
right? Right! For using variables in your program you first need to declare them,
and only then can you use them.

Declaring a Variable

In C++, you need to declare a variable before you can use it. The declaration will
tell the compiler the name of the variable, the type, and that it has to reserve mem-
ory for it. The syntax to declare a variable is as follows:

VariableType VariableName;

Where variableType is one of the types you have seen before, and VariableName is
the name of the variable. When you declare variables, you need to be aware of
some rules, which you will see in a second.

If you want to declare a Tong integer for the time elapsed since the computer
started and a floating-point number for the value of an angle, you would do it as
follows:

Tong TimeElapsed;
float Angle;

Using Variables in Your Programs 31

You can also declare various variables of the same type on just one line of code sep-
arating each variable name with a comma:

short NumberOfEnemies, BoosterEnergy, WidthOfWorld;
unsigned char CharacterType, xLoop;

Using Variables

Having variables declared just isn’t enough, is it? After you have them declared, you
can use them as you wish. In a bit | will go over operators and the many things you
can do by combining operators and variables, but for now, let’s just see how you
can use variables to communicate with the player.

A simple program showing how to use variables is provided here.

1 /* '01 Main.cpp' */

2: #Hinclude <iostream>

3:

4: main (void)

5: {

6 /* Variable declarations*/

7 unsigned char Age;

8: Tlong StartEnergy;
9: char CharacterType;

10: /* Get the Information */

11: std::cout << "What is your character's age?: ";
12: std::cin >> Age;

13: std::cout << "How much start energy?: ";

14: std::cin >> StartEnergy;

15: std::cout << "What is the character type?: ";
16: std::cin >> CharacterType;

17: /* Show the Information */

18: std::cout << "Your character is " << Age << " years old." << std::endl;
19: std::cout << "Has " << StartEnergy << " of starting energy." << std::endl;

20: std::cout << "And its type is " << CharacterType << "." < std::endl;
21: return 0;
22: }

There are a couple of new things in this program so let’s go over each of them one
step at a time. At first you declare three variables, an unsigned char, a Tong, and a
char, respectively for the age, start energy, and the character type (lines 7-9). After

2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Figure 2.2
ﬁ]ynur character‘iaage: 34 i
ov much start energy:
What is the character type: 1 Usmg Va.”ables.

You character is 3 years old.
Has 188 of starting energy.
And its type is 1.

Press any key to continue_

this is done you need to get the information from the user, you do can do this with
the std::cout counterpart, std::cin. std::cin is similar to std::cout but used for
input from the keyboard. You use the extraction (>>) operator to get data from the
console input (lines 12, 14, and 16). After you do this for the three variables, you
output the results using std: :cout and the insertion operator (lines 18-20). So let’s
look at how std::cin and variables work together.

If you’ve run the program, you will see that you have to type the variable values in
the keyboard for them to be stored, but how does this work? If you look at your
program, you have the following line:

std::cin >> Age;

What are you doing here? In the simplest of terms, you are sending whatever was
inserted in std::cin to the variable Age with the extraction operator >>. The extrac-
tion operator does exactly what its name suggests, it extracts something from what is
on its left and inserts it in its right side. A good thing about the extraction operator
and the insertion operator is that they are smart. They recognize which type of vari-
ables are being used and react accordingly. You will see how this really works later.

By using the extraction operator with std::cin, you can get all the information you
want from the player.

Initializing Variables

When you declare a variable, the compiler sets a bit of memory aside for it. This
memory may or may not already be used by other programs. The compiler just
allocates memory to the variable and doesn’t set any value to it, except when a

Variable Modifiers 33

e = = [—= L= —"1r"],

variable is a global one, but I will talk about global and local variables when 1 talk
about function and scope, so for now, just accept that variables aren’t initialized.

And what if you don’t want to leave your variables with the old values because it
may interfere somewhere in your games? You can initialize the variables to some
value. To do this, you will use the assignment operator just after the declaration of
the variable. Take a look at the following examples.

short Age = 10;
float PI = 3.14159;
long ElapsedTime = 5559265;

This code will initialize the different variables to the values you want. This can be
done with just about any variable type.

Don’t worry about the assignment operator workings since | will cover it later in
the chapter.

Variable Moadifiers

You should know about some special variables. They offer different functionality
and are sometimes advantageous to use over normal variables. Let’s see what, how,
and when they should be used.

Const

The first special variable type is constants. Constants are variables that must be ini-
tialized at declaration time and can’t be changed during program execution.

Constants are useful for values that will be the same no matter what. Constants
make it easier to read the code and also offer a way to change a value once and not
care for the rest of its use. Imagine 10,000 lines of code where the value of the
number of enemies is used about 200 times. Can you imagine the amount of work
you would do in order to change all the references to that value to the new one?
Wouldn’t it be easier to define the value in a variable and use that variable every-
where? And if you had to change the number of enemies, you would just change
the variable value.

In C++, the const keyword is used to specify that a value of a variable is a constant
and by definition cannot be changed. You use const as a variable type modifier so
that means you have to change a bit of your variable declaration to account for the
modifier. The new declaration is as follows:

34 2. Variables and Operators

_‘J_l—q_rl—lEr”_uﬂ—l_.—l_l—-l_-l

:::r__Ezgj__r_____JﬂL”J——1;L__

ModifierType VariableType VariableName;

You don’t need to use ModifierType if you don’t want to set any special attribute for
the variable, but if you want to use a variable modifier, you set it where ModifierType
is. So, how do you actually use this? Easy as pie. You just add the const keyword
before your class declaration like this:

const unsigned char MaximumLives 10;

const unsigned char MaxLives = 5;

And now you would use the variable names MaximumLives and MaxLives in your pro-
grams whenever you needed those values. If you ever need to change them during
development, you just change the value in the declaration. Take a look at the fol-
lowing program to see the use of constants on a length converter.

1: /* '02 Main.cpp' */

2: fHinclude <iostream>

3:

4: main (void)

5: {

6 /* Variable declarations */

7 const float FeetPerMeter = Value;

8: float Lengthl;

9: float Length?;
10: float Length3;
11: /* Get the information from the user */
12: std::cout << "Enter the first length in meters: ";
13: std::cin >> Lengthl;

14: std::cout << "Enter the second length in meters: ";

15: std::cin >> Length2;

16: std::cout << "Enter the third length in meters: ";

17: std::cin >> Length3;

18: /* Show the information */

19: std::cout << "First length in feet is: " << Lengthl * FeetPerMeter <X
std::endl;
20: std::cout << "Second length in feet is: " << Length2 * FeetPerMeter <X
std::endl;

21: std::cout << "Third length in feet is: " << Length3 * FeetPerMeter <K
std::endl;

22:

23: return 0;

24: '}

Variable Maodifiers

Figure 2.3

En t}le f:i.l-stdltingth} in mete 4

nter the secon ength in met 1

Enter the third length in meters: 87 ConVertmg Values'
First length in feet is: 111.549
Second length in feet is: 39.37081
Third length in feet is: 285%.433
Press any key to continue_

If, for some reason, you need to change the conversion value, you would just
change it where you declared it rather than in various places.

Don’t worry if you don’t understand how the operators work, for now just focus on
the constant use.

Register

The register modifier suggests that compiler put the variable in the processor reg-
ister, not the normal memory. There are several advantages to doing this, but
before that, let’s see what the processor register is.

Your computer CPU contains a small bit of memory where the actual operations on
data are done. To do any operation on the data, the CPU needs to pick the data
from normal memory and put it in the registers, do the operations, and send back
the data to memory. Moving data from one place to another takes time, not much
but some. If a variable were always in the register processor, the operations done
on it would be a lot faster because the data wouldn’t need to be moved. By using
the register modifier, you ask, and the key term here is ask, the compiler to put
the variable in those registers.

Registers aren’t always available, so you can’t demand that the variables be stored
there, but in case they aren’t, you don’t have to bother much since the compiler
will treat this variable as a normal variable.

35

36 2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

You define a register variable as:

register short iTemp;
register long xLoop;

Registers should be used when you know that the variable will be used many times
like in loops of various calculations as you will see later.

Variable Naming

Variable names, as all things, have rules. You can’t name your variable as you solely
wish, but thankfully, C++ grants you a great deal of freedom when doing so.

C++ naming rules are as follows: The variable name can contain only letters,
digits, and the underscore character _.

Variables are case sensitive, this is, Apple is different from apple.
C++ (and Visual C++) keywords can’t be used as variable names.

The variable name must start either with a letter or the underscore character.

Redefining Types
There is a final subject about variables you should go through. Redefining the basic
types.

As you will see later, redefining variables to other names more convenient to your
projects is a good thing, and C++ enables you to do this with the typedef keyword.
Its syntax is as follows:

typedef BaseType NewType
A few C++ examples follow:

typedef float Coordinate;
typedef short Number;

And now you could use Coordinate or Number in your code instead of f1oat and
short.

So, is this all there is about variables? Yes and no. You can use various operators or
functions with variables to produce or change the variables themselves, but in the

What Is an Operator?®? 37

e = = [—= L= —"1r"],

overall picture, this is how variables are used. | will go over a few more modifiers
when | deal with functions and variable scope.

What Is an Operator?*?

An operator is a way to tell the compiler to perform some operation on the
operand(s). The operand is what the operator operates on.

You should think of operators as exactly the same as mathematical symbols for
additions, assignments, comparisons, and so on, and thankfully C++ lets you use
operators exactly like you do in math and even offers you a few more things.

Assignment Operator

The first operator | will help you learn about is the assignment operator. It uses the
equal (=) symbol and works exactly the same way the equal symbol does in math. It
assigns, or copies, the value on the right to the left operand. The right operand
can be a variable or a literal but it must be of the same type as the left operand or
else the compiler will give you an error or warning. The usual way to use the assign-
ment operator is as follows:

LeftOperand = RightOperand

The LeftOperand must always be a variable or value holder and the RightOperand can
take the form of a variable, a literal, or a set of operators. In actual C++ code you have:

short Money;
Money = 12;

You can also do multiple assignments using the following code:

long FirstWorldEnemies, SecondWorldEnemies;
FirstWorTdEnemies = SecondWorldEnemies = 22;

Here the assignments are performed from the right to the left, assigning 22 to
FirstWorldEnemies and then to SecondWorldEnemies

Mathematical Operators

Several mathematical operators in C++ act just like the normal mathematical opera-
tors do. The first set of mathematical operators you will see are the unary operators.

38 2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Unary Operators

A unary operator takes only one operand and operates on it. There are two unary
operators in C++. These are the increment and the decrement operators. They can
be used as follows:

short A, B, C, D;
A=B=C=0D-=10;
A++;

B--;

++C;

--0;

Look at what happens at each line. You first declare four short integers and set their
initial values to 10. Now for A, you use the postfix increment operator (A++), meaning
that the A variable will be used, and only then incremented by 1, leaving the value of
A at 11 after using it. For B, you use the postfix decrement operator (B--), which will
decrement B by 1, leaving it at 9 again after it is used. For ¢, you use the prefix incre-
ment operator that will increment ¢ by 1 before it is used, and finally for D, you use
the prefix decrement operator that will decrement D by 1 before it is used.

A simple example of the difference between postfix and prefix operators can be
seen in the following code:

/* '03 Main.cpp' */
: ffinclude <jostream>

1
2
3:
4: main (void)
5: {
6 // Variable declarations
7: short A, B, C, D;
8: // Variable initialization
9: A=B=C=0D=10;
10: // Show the operator use
11: std::cout << "Using the operators " << std::endl;

12: std::cout << "A = " < A++ <K<K std::endl;
13: std::cout << "B = " <K B-- << std::endl;
14: std::cout << "C = " < ++C << std::endl;
15: std::cout << "D = " << --D << std::endl;

16: // Show the final values
17: std::cout << "After using the operators " << std::endl;

What Is an Operator?®? 39

18: std::cout << "A " <K A KK std::endl;

19: std::cout << "B = " << B << std::endl;
20: std::cout << "C = " < C << std::endl;
21: std::cout << "D = " << D << std::endl;
22:

23: return 0;

24: '}

.ame Programming All in One'Source'\Chapter_ L Flgu re 24
zing the operators
8

] Unary operators.
1

using the operators

[Sy

any key to continue

“

-
Sowwwngtunun
N0 D R D e

A
B
C
D
A
A
B
C
D
P;

w

This simple program displays how the unary operators work.

A quick note before progressing. You are probably wondering what std: :end1 is and
what it does. The std::end1 is a formatting manipulator that inserts a newline char-
acter to the stream. It basically creates a new line write on. You will see how manip-
ulators work later when you deal with input and output.

Binary Operators

Binary operators work on two operands at the same time, returning one result. These
binary operators do exactly the same as the mathematical operators so there isn’t a
need for a big explanation. Just take a look at Table 2.2 for the available operators
and you will do a small test program after.

As you can see, C++ mathematical operators work exactly the same as the normal
mathematical operators. Let’s look at the following program that demonstrates all
the operators in Table 2.2.

40 2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

TABLE 2.2 C++ Binary Mathematical Operators

Operator Symbol Description

Addition + Adds two operands

Subtraction - Subtracts the right operand from the left operand
Multiplication * Multiplies two operands

Division / Divides the left operand by the right one
Modulus % Calculates the remainder of a division of the left

operand by the right operand

You can see how this works with the following code:

1: f#include <iostream>

2:

3: main (void)

4. {

5 // Show result of various operations

6: std::cout << "3 +5="<K 3+ 5 <K std::endl;
7 std::cout << "17 - 7 = " K 17 - 7 < std::endl;

ame Programming All in One'Source’Chapter_0: ar 1 Flgu re 2 5

Mathematical
operators.

Press any key to continue_

Bitwise Shift Operators 41

e = = [—= L= —"1r"],

8: std::cout << "23 * 4 = " K 23 * 4 < std::endl;
9: std::cout << "4/ 2 =" <K 4/ 2 < std::endl;
10: std::cout << "43 % 5 = " < 43 % 5 << std::endl;

11:
12: return 0;
13: }

Compound Assignment Operators

There is just one more set of operators before | can wrap up with this entire C++
operator math, the compound assignment operators. These operators work in a way
similar to the earlier operators but have the peculiarity of an operand being used
as a normal operator operand and also for storing the result of the operation.

Look at the following code:

short Exams = 5;
Exams = Exams + 10;

Because Exanms is 5, the preceding operation would result in 15 (5 + 10). Using the
compound assignment operator, you would have a shorter line, as follows:

short Exams = 5;
Exams += 10;

Which is exactly the same thing as the preceding code. The compound assignment
operators pick the left operand and the right operand, perform the operation on
them, and when finished, store the result on the left operand.

Any of the mathematical operators you just learned can be used as a compound
assignment operator by adding the assignment operator before the actual operator.

Bitwise Shift Operators

One pair of operators is the shift operators. These two operators (left shift and
right shift) shift all the bits of a variable to the left or right by a number of places.
This will achieve the same effect as multiplication or division of a number by multi-
ples of two.

For example, the number 23 can be represented in binary by:
00010111

42 2. Variables and Operators
=" = 5 | — =y e

If you shift all the bits two places to the left, you would get the following value:

01011100

Which is 92. If you noticed, it is the same as 23*22. So shifting the values two places
to the left is the same as multiplying the value by 23*22. How about shifting it three
places? You would get:

10111000

Which in decimal is 184, or 23*22. You can see that the number of places you shift
the bit to the left represents the same as multiplying the number by two elevated to
the number of places. The same thing is true for division. If you shift the number
three places to the right, it’s the same as dividing by 23. If you want proof, just
check it out with the above numbers.

Now, how to use shift operators in C++. Easy, the base syntax is:
Variable (ShiftOperator) PlacesToShift

Where the ShiftOperator can be either << for a left shift or >> for a right shift. The
C++ code for the above examples is:

23 KK 2 /* 92 */
23 << 3 /* 184 */
184 >> 3 /* 23 */

Relational Operators

The relational operators evaluate the relation of the two operands. They are used to
compare the behavior of two operands. If the comparison results in a true state-
ment, the operator returns 1, if it is false, the operand returns 0.

Relational operators are used the same way the math operators are. You can see
them all in Table 2.3.

You use these operators with the following form:
LeftOperand Operator RightOperand

In C++, the relational operators return either 0 (false) or 1 (true) depending on
the result. Any other number that is different from 0 is also considered true by
C++. Any of the following numbers would result in true: -2, 34, -123, and 1.

Relational operators are mostly used in program control, as you will see in the next
chapter.

Conditional Operator 43

e = = [—= L= —"1r"],

TaBLE 2.3 C++ Relational Operators

Operator Symbol Description

Equality == Evaluates whether operands are equal
Not equal 1= Evaluates whether operands are different
Greater than > Evaluates whether the left operand is

greater than the right operand

Greater than or equal to >= Evaluates whether the left operand is
greater than or equal to the right operand

Less than < Evaluates whether the left operand is less
than the right operand

Less than or equal to <= Evaluates whether the left operand is less
than or equal to the right operand

Conditional Operator

The conditional is the only ternary operator in C++, which means that it takes three
operands. This conditional operator is mostly used to return one of two values depend-
ing on the relation of two operands. The syntax for this operator is as follows:

TestOperand ? LeftOperand : RightOperand

The TestOperand can be anything, but it is usually the result of a relational opera-
tion. The LeftOperand and the RightOperand are the possible return types. If
TestOperand is true, the value returned from this operator is the LeftOperand; if it is
false, the result is the RightOperand.

Check out the following program that uses the conditional operator to check
which of two variables is the greatest.

: #include <iostream>

1
2:
3: main (void)
4. {

44 2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

5:

6: short ValueA, ValueB, ValueResult;

7: ValueA = 5;

8: ValueB = 7;

9: ValueResult = (ValueA > ValueB) ? ValueA : ValueB;

10: std::cout << "The greater value is: " << ValueResult << std::endl;
11:

12: return 0;

13: }

Figure 2.6

A conditional
operator.

The program uses the conditional operator to determine whether valueA is greater
than valueB (line 9). If it is, it assigns ValueA to ValueResult in line 10; if it isn’t, it
assigns ValueB to ValueResult.

Logical Operators

Logical operators are a way to combine various relational operators. There are three log-
ical operators, each with its own separate use.

The next two logical operators follow this syntax:
LeftOperand (LogicalOperator) RightOperator

The AND operator (&&) returns true if both the operands are true or returns false if
they are both false or one is false and the other is true. Look at the following code.

Operator Precedence 45

(5 > 2) && (0==0)

Because 5 is greater than 2 and 0 is equal to 0, this operation would return true.

The OR operator (| |) returns true if any one of the operands is true or returns
false if both the operands are false.

The following code would return true (1) because one of the relational operators
is true.

(5=>2) || (0==1)

The NOT (!) operator returns true if the operand is false, or returns false if the
operand is true.

The NOT operator is a unary operator and it is used like this:
(LogicalOperator)Operant

The following code would return false because the NOT operator returns false for
any true operand.

1(5>2)

What happens in the preceding code is that the expression 5>2 is evaluated and
returns true. Because the NOT operator returns false on any true value, it will in
the end return false.

Operator Precedence

C++ operators act just like mathematical operators, and so, they have different
precedence. Check Table 2.4 for all the operators you have seen before and a cou-
ple of new ones.

I haven’t talked about some of the operators in Table 2.5 yet. They will be referred
to in the next few chapters so don’t worry about it.

There is only one thing | want to go into before finishing all this operator talk,
parentheses. In C++, you can also change the order of the operations by giving
them a higher priority with parentheses, for example:

1+4*(2+3)

would do the 2 + 3 operation and then multiply the result by 4 and in the end
add 1.

46 =

e e e S

Level

Variables and Operators

- L
TABLE 2.4 Operator Precedence

Operator Description Operator
Scope resolution ;
Post-increment il
Post-decrement -
Function call 0
Array Element 1
Pointer to member of ->
Member of
Pre-increment ++
Pre-decrement --
Logical NOT
Bitwise NOT =
Unary minus -
Unary plus 4+
Address of &
Indirection of *
Size of sizeof
New allocation new
De-allocation delete
Typecast (type)
Pointer to member object x
Pointer to member pointer ->*
Multiplication *
Division /
Remainder %
Addition +

Subtraction

Summary 47

e = = [—= L= —"1r"],

TABLE 2.4 Operator Precedence (continued)

Level Operator Description Operator

7 Left shift <<
Right shift >>

8 Less than <
Less than or equal to <=
Greater than >
Greater than or equal to >=

9 Equal to =
Not equal to I=

10 Bitwise AND &

11 Bitwise exclusive OR A

12 Bitwise inclusive OR |

13 Logical AND &&

14 Logical OR Il

15 Conditional ?:

16 Assignment =

17 Compound assignment += /= %= += = <<=>>= &= "= |=

18 Comma

Summary

| covered a good bit of information in this chapter. You learned how to declare and
use variables in your programs, how to use the various operators to modify your
variables, and how to use them all together.

Most of the following chapters will use the information covered in this chapter to
build more advanced programs, so make sure you understand the information cov-
ered here pretty well.

48 2. Variables and Operators

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

OQuestions and Answers

Q: If a byte is the smallest bit of memory you can use, why have bits?

A: A byte is made up of 8 bits. Each bit represents a value in the binary system. For
more information about the binary system, see Appendix B.

Q: How does the compiler know how to convert the numbers | use in the decimal
system to the binary system?

A: All data is represented in the computer as bits; the numbers you use in decimal
are just representations of the binary form.

Q: What is sizeof?

A: sizeof is a C++ operator that returns the number of bytes a variable or type uses
in memory.

Q: Shouldn’t true be a positive number and false zero or a negative number?

A: No. Any number that is different from zero has at least one bit set. By trying to
evaluate any number that isn’t all zeros in binary form, the compiler can easily and
quite quickly identify whether a value is true.

Exercises

1. How would the number 2321 be spanned through memory?
2. When is an int a 32-bit value and when is it a 16-bit value?
3. What is wrong with the following variable declaration?
Short Variable;
4. What is wrong with the following variable declaration?
unsigned short 2PI;
5. What would be the value of Result after the following operations?

int Result, A, B;

A= 4;

B = 23;

Result = 9 + (A++ - --B) * B

Exercises 49

e = = [—= L= —"1r"],

6. Which of the following operators has higher PRECEDENCE: a post-fix opera-
tor or unary operator?

7. Why should you use the compound operators?
8. What is wrong with the following code?
int Result, A, B, C;

A =4,
B =1;
C = 23;

Result += B + A++ * (--C * B);

9. What would be the value of Result after the following operations?

int Result, A, B, C;

A=09;
B =1;
C=2;

Result = C-- + (B++ - --B) * A+ C

This page intentionally left blank

: : I.'_ : _— = == e

e el

—

HAPTER 3

FUNCTIONS
AND
PROGRAM
+LoOow

52 3. Functions and Program Flow

LfH T e e = e . A

Dne of the main advantages of structured programming is the ability to totally
control the execution of your program.

Starting by going through simple functions and their uses in game programming
and then talking about program flow, this chapter covers two of the most important
subjects in C++ programming.

Functions: What Are
They and What
Are They Used For?*?

A function is a way to separate code blocks, or functionality if you prefer, in parts.
Functions provide the programmer a way to efficiently develop programs without
the need for listing thousands of lines in main. Functions also provide a nice way to
reuse some of the code in many locations without having to actually type the code
but rather by calling a function.

Even if you haven’t noticed, you have already used a function in your programs.
Remember main? Well, main is a function like the ones you will see here with just a
different attribute. It is a required function to any C++ program and is called auto-
matically by the operating system.

Functions have the objective to keep the code shorter, clear, and functional. They
work by calling and executing specific code blocks without having to repeat them.
Take a look at Figure 3.1 to see how it works.

Calling a function makes the computer execute a specific code block in the
location where the function was called. It doesn’t include the code, but rather
calls it.

Functions: What Are They+- 53

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Figure 3.1
Functions call independent
sabll et ik Lol
¢ specific code blocks that
Hm L
e,) are defined in different
[parts of the code.
K-
Fuxteh =———
e
Fusted 1df =—
]
vohl Rumchions fohl)
{
.
¥

You can see how functions work in the following program that computes the square
of a number using a function.

1 /* '01 Main.cpp' */

2

3: /* Input output stream header*/
4: finclude <iostream>

5:

6: // Function prototype */

7: double Square (double Value);
8

9: main ()
10: {
11: double Number, SquaredNumber;
12:
13: Number = 5;
14

15: /* Call the function */

16: SquaredNumber = Square (Number);

17:

18: std::cout << SquaredNumber << std::endl;
19:

20: return 0;

549 3. Functions and Program Flow

LfH T e e = e . A

21: }

22:

23: /* Function definition */
24: double Square (double Value)

25: {

26: /* Function code */

27: double SquareReturn;

28:

29: SquareReturn = Value * Value;
30:

31: return SquareReturn;

32: }

Lt Proyrs g &l -l.-."l:ﬂml:'l_Lh.ﬂ.p:: -10f =| Figure 3.2

v cunlanue The square function.

Without getting into the specific functions, what you do here is to declare and
define a function to find the square of a number, as shown in Figure 3.2. You ask
the user for a number with std::cin and calculate the square of it by calling the
function, showing it in the end.

Creating and Using
Functions

Two steps are involved in creating functions: declaring and defining them. After
this is done, the functions can be called in the code normally.

Creating and Using Functions 55

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Declaring the Prototype

The first step to create a function is to declare the function prototype. You do this
by defining the function header followed by a semicolon.

A function header defines a function with three parts: the return type, the function
name, and the function parameters.

Return Type

The return type can be any variable type you have seen in the preceding chapter. It
tells the compiler what kind of value the function returns to the calling section of
the program.

You can also specify a function to return no value by specifying the return type as
void. In the previous example, Square returns a double value, which was the square
of the argument. You can assign that value to any variable, as shown.

Name

The function name (see Figure 3.3) is what identifies the function in the code. If
you need to call the function, you do this by using this name, which should be
clear, specify what the function does, and be neither too long nor too short. More
advice on function naming is given later when I talk about software architecture.

The function name must follow the same rules as variable naming, which can be
found in Chapter 2.

Figure 3.3
- The function name
R type identifies the function
l in the code.
int Square {nt X3

56 3. Functions and Program Flow

LfH T e e = e . A

Parameters

The last part of the function header is the parameters list. This is a list of parame-
ters, or values, that are passed to the function. They must be enclosed in parenthe-
ses after the function name. This tells the compiler the number and the type of
each parameter to expect.

If you don’t want to pass any variables to the function, you should specify the para-
meter list as void. This isn’t strictly necessary since you can just leave the parameter
list empty, but it is a good programming practice to do so.

If you want to pass various parameters you need to separate them with commas.
A few examples of function prototypes are as follows:

double Square (double Value);
void ShowHelp (void);
double Area (double Width, double Height);

The Area function requires two values of type double that will be used as the rectan-
gle width and height respectively, to calculate the area of the rectangle.

Function Body

The function body is the code that is actually executed; it is what the function does.
This is done by declaring a function header without the final semicolon and then
the code block. Inside the code block is the code that is called. From the example
in the previous section a function body that calculates the area of a rectangle is the
following:

double Area (double Width, double Height)
{
double AreaReturn;

AreaReturn = Width * Height;

return AreaReturn;
}

This code declares a variable to hold the result, and then it multiplies the Width
and Height parameters to get the area, and returns the result.

Creating and Using Functions 57

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

You can now use this function in your code by writing the function name followed
by parentheses with the function arguments, thus calling the function, and in your
example looks like: Area (10, 20);.

You have learned what a parameter is, but what is an argument? Arguments are the
values you pass as parameters to the function that is used in its calculations.
Confused? Don’t be, just check Figure 3.4 and the following program:

1 /* '02 Main.cpp' */

2

3: /* Input output stream header*/
4: f#include <iostream>

5:

6: double Cube (double Value);
7

8: main ()

9: {
10: double Number, CubeNumber;
11:

12: std::cout << "Enter a number: ";

13: std::cin >> Number;

14

15: /* Number is the function argument */
16: CubeNumber = Cube (Number);

17:

18: std::cout << CubeNumber << std::endl;
19:

20: return 0;

21: }

22:

23: /* Value is the function parameter */
24: double Cube (double Value)

25: |

26: double CubeReturn;

27:

28: CubeReturn = Value * Value * Value;
29:

30: return CubeReturn;
31: }

58 3. Functions and Program Flow

LfH T e e = e . A

1 ey g Sl -l.-."l,!ru-'tl:'l_Lh.'lpl:! \ Figure 3.4

The cube function

[ETTLRETIITY

In this program, you pass the variable Number to the function Cube. In the Cube func-
tion prototype, you see it has one parameter, Value. Number is the argument you pass
to the parameter Value.

Default Parameters

C++ offers a very nice feature in default parameters. Default parameters are a way to
specify a common default value for a parameter so that when you call the function
you don’t have to specify the argument.

To specify a default parameter, you just assign a value to the parameter in the func-
tion prototype like this:

void CalculateIVA (long Money, double IVA = 0.17);

This way, you can call the function without specifying the IVA value. Check the fol-
lowing program to see how this works:

/* '03 Main.cpp' */
/* Input output stream header*/
: f#include <iostream>
: void CalculateIVA (long Money, double IVA = 0.17);

: main ()

1
2
3
4
5:
6: /* Use default parameter for IVA - 17% */
7
8
9
10:

Default Parameters 59
i — —T . ?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

11: std::cout << "Specifying the IVA value : $1000" << std::endl;
12: CalculateIVA (1000, 0.12);

13:

14: std::cout << "Using the default IVA value : $1000" << std::endl;
15: CalculateIVA (1000);

16:

17: return 0;

18: }

19:

20: void CalculateIVA (long Money, double IVA)

21: |

22: double MoneyWithIVA;

23:

24 /* Calculate IVA */

25: MoneyWithIVA = Money * IVA;

26:

27: std::cout << "Money after IVA at " << IVA << " is " << MoneyWithIVA;
28: std::cout << std::endl;

29: }

The preceding program calls the function
CalculatelIVA first specifying the IVA value, and

: o . : NOTE
then without specifying it. Try it and see the dif-
ferences for yourself.

Functions with the same
name can have different para-

Default parameters must always be the last para- meters lists. This is called
meters in the list. This prevents the compiler function overloading, which
from calling the incorrect function when using you will deal with later.
default parameters. See Figure 3.5 \

Figure 3.5

The default
parameters are the
last in the list.

60 3. Functions and Program Flow

LfH T e e = e . A

Variable Scope

One of the nicest features of C++ is that you can declare functions as you go; they
can be at the start of the program, in the middle, or inside other functions: you
decide. But this comes at a cost. A variable you define inside a function can only be
used inside that function. A variable you define in the third line of the program
can’t be used in line 2. This is called variable scope.

The scope of the variable is usually defined by the code block it is in. Take a look at
the following example:

{
short Age, ID;

short ID;
long Energy;

Age = 0;
ID = 123;
Energy = 12334;

Energy = 23;
}

There are a couple things to note about this code:

+ This code doesn’t work! The variable Energy before the last } is undeclared.
This is because the variable Energy’s scope is only the second code block.

+ You declare ID twice; it should give you an error since each variable must
have a unique name, but it doesn’t. This is because the second ID has differ-
ent scope than the first, so it is treated as a completely different variable.

+ Inside the second code block you have access to the variable Age declared in
the first block.

+ In the end of that code, the variable Age is 0 and the ID variable is also 0. This
happens because for the variable Age, the second code block has normal
access to Age and can use it at will. The reason that ID has the initial value is

Variable Scope b1

IJ—'I_I?|_|—'—|_|—'-u_"'IEI—'_|_|'I—|—|_'_

because in the second code block you specify another variable named 1D,
thus you lose any access to the first one.

Locals

Even if you don’t know what local variables are, you have been using them all along.

Local variables are variables that are defined inside the scope of a function, that is,
inside the function itself. They can only be accessed inside the function where they
are declared. Examples of local variable declaration are in the functions you have
been using for calculating the square or cube of a number.

Global

A global variable has the whole file as scope. They are declared usually after the
#include directive and can be accessed during the rest of the file. Here is an example:

9:
10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

/* '04 Main.cpp' */

/* Input output stream header*/

main ()

{

std::cout <K
std::cout <K
std::cout <K
std::cout <K

1
2
3
4: ffinclude <iostream>

5:

6: short NumberOfPlayers;
7: long Energy;
8

"Before the variables are used" << std::endl;

"Number of players: " << Number(OfPlayers << std::endl;
"Energy: " << Energy << std::endl;

std::endl;

NumberOfPlayers = 10;
Energy = 438534;

std::cout << "After the variables are used" << std::endl;
std::cout << "Number of players: " << NumberOfPlayers << std::endl;
std::cout << "Energy: " << Energy << std::endl;

return 0;

}

62 3. Functions and Program Flow

LfH T e e = e . A

Frayras g S e S uere Usaglor_U u . Figure 3.6

L LI

An example of global
variables.

As you can see, you can use the variables that were defined after #include normally.
The only difference between global and local variables is that global variables are
always initialized to 0 whereas local variables aren’t. See Figure 3.6.

You won’t make much use of global variables since you don’t want to be able to
change variables where you shouldn’t and to keep all the code modular and self-
containing, which are topics I will discuss later.

Static

A static variable retains its value between function calls. If you modify a static vari-
able inside a function, the next time you call that function, the static variable will
have the value that it had the last time the function was called. See Figure 3.7.

You declare a static variable using the static modifier on a variable like the following:

static short Energy;
static unsigned char Players;

Check the following program to see this at work.
1 /* '05 Main.cpp' */

2

3: /* Input output stream header*/

4: #include <iostream>

5:

6: void AddPrintEnergy (short EnergyToAdd);
7

8

: main ()

Variable Scope 63

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

9: {
10: AddPrintEnergy (10);
11: AddPrintEnergy (10);
12: AddPrintEnergy (10);
13: AddPrintEnergy (10);
14
15: return 0;
16: }
17:
18: void AddPrintEnergy (short EnergyToAdd)
19: {
20: static short Energy = 0;
21:
22: Energy += EnergyToAdd;
23:
24: std::cout << Energy << std::endl;
25: }
As you can see, Energy isn’t set to zero every time
the function is called, just the first time. It holds NOTE
its value during the four calls to AddPrintEnergy. Automatic variables are the

default when you create a
variable without the static

The main difference in technical terms of static
variables and normal variables, or more accu-
rately, automatic variables, is that automatic vari-
ables are created each time they are declared
and static variables are created only the first time
they are declared.

keyword. Optionally, you can
specify the auto keyword
before the variable type to
define it as automatic.

b e Prayrasnrg S U Suerus Ubsaglor_UF IS Sl :.:_' - F ig ure 3.7

Static variables.

64 3. Functions and Program Flow

LfH T e e = e . A

Recursion

The last topic on functions I should talk about is recursion. Recursive functions are
functions that call themselves. Weird? Naaaaah.

If you want to calculate the value of a number to some exponent, you would do
something like this:

4 75 =4 x4 x4 x4 x4 =1024
Using a linear function to calculate exponents of any number would be, to say the

least, hard. Using a recursive function, you can easily do this and do it in a few
lines. Don’t believe me? Check out the following program:

1 /* '06 Main.cpp' */
2
3: /* Input output stream header*/
4: #include <iostream>
5:
6: long Exponential (unsigned long Number, short Exponent);
7
8: main (void)
9: {
10: Tlong ExponentialValue;
11:
12: ExponentialValue = Exponential (4, 5);
13:
14: std::cout << ExponentialValue << std::endl;
15:
16: return 0;
17: }
18:
19: Tong Exponential (unsigned long Number, short Exponent)
20: {
21: static Tong OriginalNumber = Number;
22:
23: /* Performs the exponential operation */

24: Number *= QOriginalNumber;

25: /* Verify that the exponent is valid */
26: if (Exponent > 2)

27: |

28: return Exponential (Number, Exponent-1);

Recursion 65

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

29: |}

30:

31: return Number;
32: }

The Exponential function calculates the exponential value of any Number raised to
Exponent using a recursive function. It calls itself continuously while Exponent is
greater than 2. Each time the function is called, it multiplies the Number by
OriginalNumber (the base). You also decrease Exponent by one each time to correctly
calculate the result. When Exponent is less than or equal to two, the function
returns the result.

Lt e Preyrass e g Al m e S s Uagler LU 1=t Figure 3.8
¢ Ly cunlinue The exponential
function.

You can see in Figure 3.9, the way the function is called on the left, and the values
it returns on the right side.

Figure 3.9

Fxponential (4,5) 128%4
b Exponential (4.4) T 320
b Exponential (4,3) T %4
b Exponential (4,2) 1 4%4

Don’t worry about the if in the code; it is just a way to check whether the expo-
nent is valid. I will go over it in just a second. Just know that if the expression after
the if is true, the next code block is called; if it isn’t, it is jumped.

66 3. Functions and Program Flow

LfH T e e = e . A

Things to Remember
When Using Functions

Here is a useful list of things to remember when dealing with functions:

® Function headers have three parts: the return type, the function name, and
the parameters list.

® Function names must comply with the variable naming rules, and each func-
tion must have a unique name.

® Default parameters should be used when one or more arguments of the
function are the same value when called.

= Default parameters must be the last parameters in the parameters list of the
function.

® Variables have specific scope to the functions where they are created.

m Global functions should be avoided, or at least, not modified much in func-
tion code.

® Recursion should be used when the code actually benefits from it; take care
to avoid its overuse.

Program Flow

The execution order of C++ is very linear; it starts with the first call after main and
goes through every code line until the last one. If you couldn’t control this, for
even a small simple game, you would have to do many, many lines of code. C++
offers a couple of statements so that you can control how this flow is done. Instead
of going the normal begin-end way, you can skip certain parts of code and execute
certain code several times.

I will first go over the C++ relational operators to start explaining how the flow is
processed, and when you are briefly familiar with them, I will go over loop statements.

Code Blocks and Statements

The control statements you will see next require a code block or statement after
them. What is the difference between them? A code block, as you have seen, is a
section of code enclosed in curly braces. Each of the code lines inside the block is a
statement. For example:

if, else if, else Statements 67
'=-'‘-u—|’-I - 1 LI ?u_—'_'_'-"_u-lsl_'_l—r—l—l_.—

{
ShowHelp ();
}

Does exactly the same as:
ShowHelp ();

Whereas the first uses a code block with the statement, and the second one uses
only the statement.

So, a statement is a code line, and a code block is a collection of statements. Why
should you care? Well, the following statements require either a code block or a
statement. If you use a code block, all the statements inside that block are called
and then control returns to the calling statement; if you use just one statement,
then that statement is executed and control returns to the calling statement.

Don’t worry if you don’t understand it; it will start to make sense when you see
both in action.

if, else if, else Statements

These statements are used to check whether a certain code block should be called
or not. If the expression to be evaluated with these statements is true, then the
code block is called.

it
The if statement evaluates the expression that follows it and if it is true, it executes
the code that follows; if it isn’t true, it skips it. The form of the if statement is:

if (ExpressionToEvaluate)
{

Statementl;

Statement?2;

Statement..;

StatementN;
}

If ExpressionToEvaluate is true, the following code is called; if it isn’t true, then the
program control just skips it and continues after it. See Figure 3.10.

The code block in the code above can also be just one statement followed by a
semicolon.

638

3. Functions and Program Flow

S o B

T = 7,

== . nre

Take a look at the following program that shows how the if statement is used with
code blocks and statements.

11:
12:
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:

{

}

/* '07 Main.cpp' */

/* Input output stream header*/

: main ()
9:
10:

short Action;
/* Ask the user what he wants to do */
std::cout << "What do you want to do: ";

std::cin >> Action;

1
2
3
4: f#include <iostream>
5:
6
7
8

: void ShowHelp (void);

/* Check to see what the player wanted to do */

if (Action
{
std::cout
std::cout
}

if (Action
{
std::cout
std::cout
}

if (Action
{
std::cout
std::cout
}

if (Action

K
K

K
K

ShowHelp ();

return 0;

1)

"You
std:

"You
std:

"You
std:

have chosen to run away.";

rendl;

have chosen to fight.";

:endl;

did wrong, you die!";

rendl;

if, else if, else Statements 69

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

36:
37: void ShowHelp (void)
38: {

39: /* Show the help commands */

40: std::cout << std::endl;

41: std::cout << "1 - Run";

42: std::cout << std::endl;

43: std::cout << "2 - Fight";

44: std::cout << std::endl;

45: std::cout << "3 - Surprise action";
46: std::cout << std::endl;

47: std::cout << "4 - Shows this help screen";
48: std::cout << std::endl;

49: }

_im=| Figure 3.10

An example of an if
statement.

Even if this simple program is a little hard to work with, many of the old text MUDs
were programmed this way. The code actually asks the player what he wants to do
and then tests it against four numbers, each one defining an action: one for run-
ning away, two for fighting, three for a surprise, which actually kills the player, and
four that shows the available actions. Depending on the choice, the program shows
a string with the action description.

You can also see the if statement can be used with single expressions or code
blocks.

70 3. Functions and Program Flow

LfH T e e = e . A

else

You can add a little extra functionality to the if statement, with an else clause. The
syntax for using the else is as follows:

if (ExpressionToEvaluate)
Statementl

else

Statement?2

This evaluates whether ExpressionToEvaluate is true; if so, it performs Statementl; if
itisn’t, it performs Statement?2 instead.

Modify the previous example by replacing if (Action == 4) with else and check
the result.

You see that if Action is different from 1, 2, or 3, it will execute the ShowHelp ()
function. This is a nice way to deal with out-of-range problems that the user may
cause.

The if ... else statements will prove very handy in the games you will be develop-
ing so make sure you understand this well.

while, do ... while,
and for Loops

C++ offers you three different ways to create loops, each of them offering different
functionalities but basically doing the same thing: processing the same code loop
while an expression is true.

while

The while loop is probably the easiest of the loop structures. It executes the loop
while the evaluation expression is true; its syntax is:

while (EvaluatingExpression)

{
Statements

while, do ... while, and for Loops 71

—'="_Ll|"n i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

This code will execute the code block after the while line while EvaluatingExpression
is true. The following program outputs all the square roots of numbers 1 through 20
using the while loop.

1: /* '08 Main.cpp' */
2:
3: /* Input output stream header*/
4: fHinclude <iostream>
5: /* Math header*/
6: #include <math.h>
7:
8: main ()
9: {
10: short Number = 1;
11:
12: while (Number <= 20)
13: |
14 std::cout << "The square root of " << Number << " js: ";
15: std::cout << sqrt (Number) << std::endl;
16: Number ++;
17: 1}
18:
19: return 0;
20: '}

This code outputs the square root of all the numbers between 1 and 20 by repeat-
ing the output and calculation code while Number is less than or equal to 20. You
also need to increment Number by one each loop iteration. See Figure 3.11.

Figure 3.11
The while loop.

72 3. Functions and Program Flow

LfH T e e = e . A

do ... while

The do ... while loop is very similar to the while loop, but the evaluation is only
done at the end of the loop. This way, the code inside the loop is executed at least
once. The syntax for the do ... while loop is as follows:

do
{

Statements
}
while (EvaluatingExpression);

This will execute the code within the block while EvaluatingExpression is true. It
will also execute the code block at least once if EvaluatingExpression is false.

The following example uses the do ... while loop to develop a menu.

1. /* '09 Main.cpp' */

2:

3: /* Input output stream header*/
4: {Hinclude <iostream)

5:

6: main ()

7: |

8: short Action = 0;

9:
10: do
11: |
12: std::cout << "1 - Do exactly nothing.";
13: std::cout << std::endl;

14: std::cout << "2 - Try to do nothing.";
15: std::cout << std::endl;

16: std::cout << "3 - Exit.";

17: std::cout << std::endl;

18: std::cin >> Action;

19:)}

20: while (Action != 3);

21:

22: return 0;

23: }

while, do ... while, and for Loops 73

i — ?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Figure 3.12
The do...while
loop.

This is a very simple program that shows how loops, the do ... while loop in this
case, can be used to create menus. It does nothing more than output the options to
the player while Action is different from 3. See Figure 3.12.

for

The last loop you should learn about is the for loop. The for loop offers you a cou-
ple of more options than the while or do ... while loops.

The for loop is composed of three parts, usually used in this order: initialization,
evaluation, modifying. See Figure 3.13. The actual syntax is as follows:

for (InitializeVariable; EvaluationExpression, ModifyVariable)
{
Statements

}

I think an example would be easier to understand, so check out the following pro-
gram that calculates the square of all the numbers between 1 and 20.

/* '"10 Main.cpp' */

1

2

3: /* Input output stream header*/
4: finclude <iostream>
5.

6

: main (void)

74 3. Functions and Program Flow

LfH T e e = e . A

short Number;

10: for (Number = 1; Number <= 20; Number++)

11: |

12: std::cout << "The square of " << Number << " is: ";
13: std::cout << Number * Number << std::endl;

14:)}

15:

16: return 0;
17: }

_ioi=]| Figure 3.13
The for loop.

This example uses the for statement to initialize Number to 1, evaluate the control
expression, increment Number, and execute the loop code.

The first part of the for statement is used to initialize Number to 1. This part of the
statement can be used to do anything or to do nothing at all, but it is mostly used
for this.

The second part is the normal evaluation, in this case Number <= 20. While this
expression evaluates to true, the loop code is called. The third and last part is
where you increment Number by one. This section also accepts any statement, but it
is commonly used to increment a value.

Breaking and Continuing 75

—'="_Ll|"n i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Additionally, you can slightly alter the syntax of the for loop and omit the
InitializeVariable and ModifyVariable. For example:

short Number = 1;

for (; Number <= 20 ;)

{

std::cout << "The square root of " << Number << " is: ";
std::cout << sqrt (Number) << std::endl;

Number ++;

}

This code does exactly the same thing as the while loop shown earlier. You initialize
Number outside the loop, then in the for statement you just use the evaluating part
and ignore the other two.

Breaking and Continuing

When you enter a loop, you also need a way to get out of it or to bypass an itera-
tion. This is accomplished with the break and continue keywords respectively.

break

The break statement enables you to get out of a loop when you want. Imagine you
are inside the game loop but want to allow the player to get out of it if he presses
the Esc key. You would use the break statement to get out of the loop. Check the
following code:

while (GameIsRunning)
{

// Do game stuff

if (EscPressed)

{

break;
) NOTE
} You will see how to check
This example will run the loop while GameIsRunning Wwhether certain keys are

pressed when you deal
with advanced input and
output in the next chapter.

is true, different from zero. If the player presses the
ESC key, making EscPressed true, you use the break
statement to get out of the loop.

756

3. Functions and Program Flow

S o B

nr—“ﬂ——1_r—*___L__r__EEE

continue

The continue keyword enables you to skip a loop iteration. Suppose you are calcu-
lating the tangent of the values from 0 to 180; you know that the tangent of 90 is
invalid so you would need to skip that value. The continue keyword enables you to
do it. Try the following program that outputs the tangent of the values from 0 to
180 in intervals of 10.

22:
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:

/* '11 Main.cpp' */

/* Input output stream header*/

1
2
3
4: fHinclude <iostream>
5:
6
7
8

/* Math header*/

. ffinclude <math.h>

: double DegreeToRadian (double Angle);

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

main ()

{

short Angle;
for (Angle = 0; Angle < 180; Angle += 10)
{

if (Angle == 90)

{

std::cout << "The tangent of 90 is invalid."

continue;
}

LT L

== . nre

<< std::endl;

std::cout << "The tangent of " << Angle <K " is: ";
std::cout << tan(DegreeToRadian(Angle)) << std::endl;

}

return 0;
}

double DegreeToRadian (double Angle)
{
double Radian;

Radian = (Angle * 180) / 3.14159;

return Radian;
}

Switching to switch 77

—'="_Ll|"n i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Figure 3.14

The continue
statement.

This code uses a normal loop to
calculate all the tangents of the NOTE

numbers from 0 to 180 using Because all C++ math functions use

intervals of ten. Nothing really radians as angles, you need a function to
new except when the angle is 90. convert degrees to radians.This is

You use an if statement to find explained later in the math chapter.
when angle is 90, and when it is,

you present an error message and
skip the calculation of the tangent
using the continue statement. See NOTE
Figure 3.14.

| . S . [|

The tan function is a math function defined
in the math.h header file.

(.. S S]

Switching
to switch

To finish the program control material there is just one more control statement to
go over: the switch statement. (See Figure 3.15.) The switch statement enables you
to check whether a variable is equal to any specific value, and if so, execute a state-
ment. The syntax for the switch statement is as follows:

switch (Variable)
{
case 1:
Statementl
break;

78

3. Functions and Program Flow

S o B

}

case 2:
Statement?2
break;

default:

Statement3

Break;

T = 7,

== . nre

Look at the following program. It does exactly the same thing as the program ear-
lier but uses switch instead of several ifs.

{

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

/* '12 Main.cpp' */

/* Input output stream header*/

: main ()
9:

short Action;
/* Ask the user what he wants to do */
std::cout << "What do you want to do: ";

std::cin >> Action;

1
2
3
4: finclude <iostream>
5:
6
7
8

: void ShowHelp (void);

/* Check to see what the player wanted to do */
switch (Action)

{

case 1:
std::cout
std::cout
break;

case 2:
std::cout
std::cout
break;

case 3:
std::cout
std::cout

K
K

K
K

K
K

"You
std:

"You
std:

"You
std:

have chosen to run away.";

:endl;

have chosen to fight.";

:endl;

did wrong, you die!";

rendl;

Switching to switch 79

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

32: break;

33:

34: default:

35: ShowHelp ();
36: break;

37: 1}

38:

39: return 0;

40: }

41:

42: void ShowHelp (void)
43: |

44: /* Show the help commands */

45: std::cout << std::endl;

46: std::cout << "1 - Run";

47: std::cout << std::endl;

48: std::cout << "2 - Fight";

49: std::cout << std::endl;

50: std::cout << "3 - Surprise action";
51: std::cout << std::endl;

52: std::cout << "4 - Shows this help screen”;
53: std::cout << std::endl;

54: }

If you run the program, you will see that it does exactly the same as the previous
one, but in code you see that you ditched all the if clauses and included a simple
and cleaner way to work with this kind of problem. It accepts the action as the

b e s Py g Sl U 1 ':I i . 10 =| Figure 3.'5

The switch
statement.

ao 3. Functions and Program Flow

LfH T e e = e . A

switch argument and then compares it with each case. If it matches with any of the
cases, then it executes the code until the break. As seen before, the break statement
gets you out of any program control statements, in this case, the switch. If you
didn’t include it, whenever a match was found, the program would execute that
case and any case following until getting out of the switch block.

The default case works similarly to the else statement and is executed if none of
the cases matches.

Randomizing

C++ also provides you with a way to get random numbers using the rand function.

rand returns a value between 0 and RAND_MAX, which is, by default, 32767. You rarely
use the maximum value to get a random number, so what can you do? Well, if you
read the previous chapter (you did, didn’t you?), you certainly remember the
remainder operator. If you divide any number by another number, you can only get
as many different remainders as the dividend; that is, if you divide number 10 by 5,
the only possible remainders are 0, 1, 2, 3, 4. Take a look at the following code that
illustrates this.

/* '13 Main.cpp' */

1

2

3: /* Input output stream headerx/
4: finclude <iostream>
5.

6

7

8

: main ()
{
short Value;
9: short Dividend = 4;

10:

11: /* Calculate the remainder from 0 to 25 */

12: for (Value = 0; Value < 25; Valuet+)

13: |

14 /* Show the remainder */

15: std::cout << Value << "%" << Dividend << "=" << Value % Dividend;
16: std::cout << std::endl;

17: 1}

18:

19: return 0;

20: }

Randomizing a1

i — ?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Figure 3.16

A sample of
randomizing.

What you do here is loop from 0 to 25 using the for loop and calculate the remain-
der of each value. As you can see, all the remainders are 0, 1, 2, or 3. This theory
applies to random numbers also. Try the little “Guess the number” game, as follows:

1: /* '"14 Main.cpp' */

2:

3: /* Input output stream header*/

4: #include <iostream>

5: /* Standard library header*/

6: #include <stdlib.h>

7:

8: main ()

9: {
10: short Number;

11: short Guess = 0;

12:

13: /* Get random number and add one to prevent it from being zero */
14: Number = rand () % 100;

15: Number++;

16:

17: /* Until player finds the number continue to Toop */
18: while (Guess != Number)

19: |

20: std::cout << "Enter a number between 1 and 100: ";
21: std::cin >> Guess;

22:

23: /* If guess is higher, give hint */

a2 3. Functions and Program Flow

LfH T e e = e . A

24 if (Guess < Number)

25: {

26: std::cout << "You are guessing Tow.";
27: std::cout << std::endl;

28: }

29: /* If guess is lower, give hint */
30: if (Guess > Number)

31: {

32: std::cout << "You are guessing high.";
33: std::cout << std::endl;

34: }

35: 1}

36:

37: /* Show win message */

38: std::cout << "You got it bud, the winning number is: " << Number;
39: std::cout << std::endl;

40:

41: return 0;

42: }

Figure 3.17

A “Guess the
Number” game.

This is an easy game to program. You first get a random number between 1 and
100, which is done by using rand () % 100 and then incrementing it since the
remainder of a division by 100 is always in the 0 to 99 range. After that you should
already know what is happening; you enter a while loop and only leave it when the
user guesses the number. In the loop, the program asks for a guess and shows a

First Game: “Craps” a3

hint depending on whether the guess is

higher or lower than the number. NOTE

If you run the game a couple of times The rand, srand, and RAND_MAX are
you will notice something—the number part of the std1ib.h header file.The
is always the same. This is weird since time function is part of time.h.To be
you want a random number, right?> Well, able to use these functions, you need

to include the std1ib.h and time.h
header files in your project like you
did with jostream.

this is to the nature of the rand function
itself since it uses a seed (number) for
calculating the random number. You
don’t need to know the inner workings
of rand but rather how to change that
seed, and C++ provides you with a function to do this also: srand. srand takes an
unsigned int as an argument and changes the rand seed with that number. To get a
truly random number you can use a number that changes over time. The time func-
tion does just that! It takes a pointer to a long integer as argument and returns the
time as a long integer.

In the preceding “Guess the number” game, add the following line
srand (time (NULL));

before rand () % 100; and run the game a couple of times. See the difference?
Each time you start a new game, it generates a random number different from the
last one.

First Game: “Craps”™

Finally, you will develop your first game. If you haven’t had much trouble grasping
all the material until here, you will have no problem with this simple game.

Objective

The objective of the game is to get as much money as possible. This is accom-
plished by placing bets that make the player gain or lose money, depending on the
amount put down and the type of bet, and obviously, the number of the dice, the
player either wins or loses the money.

This game is a simple version of the normal casino craps, with simplified rules and
bets. But, of course I wouldn’t know since I never gamble! He-he-he.

84 3. Functions and Program Flow

LfH T e e = e . A

Rules

The rules for this game are very simple. The player starts with $1,000. Before the
dice are thrown, the player must place a bet on the outcome of the dice sum.
There are three types of bets: 2 or 12, 4 or 10, and 6 or 8. If the sum of the dice
value is any of these values, and the player had a bet on it, the money is multiplied
as shown in Table 3.1.

If the sum of the dice is any value different from the one the player bet, all the
money returns to the casino.

The minimum amount the player may bet is $10 and the maximum $100. The
player loses the game when he runs out of money to go home.

TABLE 3.1 Bet Payouts

Bet Payout
20r 2 5:1
4orl0 2.5:1
6or8 I.5:1
Design
At first, the player will be presented
with a simple screen showing the rules
of the game. The player is then taken to NOTE
the betting menu. Here he can choose This is a very simple design for this
the type of bet and the amount he simple game. | will deal with game

design in more depth when you get
to Part 3,‘“Hardcore Game
Programming.”’

wants to bet. After this is done, the dice
are thrown and depending on the
result, the user will gain or lose his
money. This small bet-roll dice proce-
dure is repeated until the user has no
money to gamble.

First Game: “Craps” a5

?|_|—'—|_|—'-"_“'|5|—'_|_|1—|—|_'_

7 R il

This is shown in pseudo code, as follows:

Show intro screen
While player has money to play
Begin

Ask player for kind of bet
Ask player for amount to bet

Rol11 dice
Calculate ga

End

ins

Intro screen

i

Flace het

T T

Throw dice

!

Calculate gain and
losses

1

Player has money?

Tes

Mo

¥

End

Implementation

Figure 3.18

A flowchart of our
code example.

Before starting to code, let me explain how I am going to describe the program.

All the code for this game will be presented in this section, but in part. It will start
with a small bit of code, then a brief explanation of it, then another bit of code,
then explanation. This is repeated until the code is complete. If you want to try to
program for yourself, you should copy only the code blocks to the source file in the
order they are presented here or you can copy them from the CD. In the end you
will have a complete game.

Ready to start? Good! Let’s begin with including the header files you need and
declaring the function prototypes.

1: finclude <iostreamd
2: fHinclude <stdlib.h>

ab 3. Functions and Program Flow

#include <time.h>

void ShowIntroScreen (void);

void ShowInformation (unsigned long Money);
short GetBet (void);

short DoDiceThrow (void);

W 0O N o o A W

10: unsigned Tong GetAmount (void);

== . nre

: unsigned short DoMoneyCalc (short Dice, short Bet, short BetMoney);

You include the iostream header to be able to do input and output, the std1ib.h
header to use srand, rand, and the time.h header so you can truly randomize the

numbers with time.

You then declare the function prototypes you will be using during the game. These

will be explained with time when you start building their body.
You will now move to main:

12: main (void)

13: {

14: unsigned long MoneyEarned;
15: unsigned Tong Money;

16:

17: short DiceValue;

18: short Bet;

19: short BetMoney;

20: /* Show intro and setup game
21: ShowIntroScreen ();

22: Money = 1000;

23:

24: /* Play while player has money

25: Keep 100 dollars for the cab home */
26: do

27: {

28: ShowInformation (Money);

29: // Get bet information */

30: Bet = GetBet ();

31: BetMoney = GetAmount ();

32: DiceValue = DoDiceThrow ();

33: MoneyEarned = DoMoneyCalc (DiceValue, Bet, BetMoney);
34:

35: Money -= BetMoney;

First Game: “Craps” 87

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

36:

37: /* Show the number */

38: if (MoneyEarned == 0)

39: {

40: std::cout << "You Tost. Number was: " << DiceValue;
41: std::cout << std::endl << std::endl;

42: }

43: else

44 {

45: std::cout << "You won " << MoneyEarned - BetMoney;
46: std::cout << " dollars. Number was: " << DiceValue;
47 std::cout << std::endl << std::endl;

48:

49: Money += MoneyEarned;

50: }

51: }

52: while (Money > 100);

53: std::cout << "Game Over. Keep $" << Money << " for the ride home";
54: std::cout << std::endl;

55:

56: return 0;

57: }

The main function is the representation of the pseudo code in the previous section.
You declare some variables you will be using and show the intro screen. You then
set up the initial money and enter the main game loop.

In the game loop, you first show the money available to the player and then ask
which type of bet he wants and how much he wants to bet. The bet amount is
deducted from the player money. After this, the dice are thrown and the earnings
(if any) calculated.

In the end of the game loop, it shows the dice result and, if the player won, shows
how much he won.

This game loop continues until the player has fewer than $100; when this happens,
a game over message is shown.

59: void ShowIntroScreen (void)

60: {

61: std::cout << " Welcome to Craps 1.0";
62: std::cout << std::endl << std::endl;

a8

=

S o B

:cout
:cout

:cout
:cout

:cout
:cout
:cout
:cout
:cout
:cout
:cout
:cout
:cout
:cout

:cout
:cout
:cout

:cout
;:cout

K
K

K
K

K
K
K
K
K
K
K
K
K
K

K
K
K

K
K

Functions and Program Flow

T = 7,

"Here are the rules:";
std::endl << std::endl;

"You have 1000 dollars to start gambling.
std::endl << std::endl;

"You can do three different bets.

"numbers 2 and 12 which will give";
"you a win ratio of ";
"5 to 1 if you win. You can also bet on the numbers 4 ";

"and 10 ";
"which will give you a win ratio of 2.5 to 1.

std::endl;

’

You can bet on

== . nre

",
s

"The Tast kind of bet you can do is on the numbers 6 ";
"and 8 which will give you a win ratio of 1.5 to 1.";
std::endl << std::endl;

"The minimum amount to bet is 10 dollars and the

"maximum 100 dollars.";
std::endl << std::endl;

"Have fun playing.";
std::endl << std::endl <K std::endl;

",
’

This function is rather simple. It shows the rules to the Craps game. Nothing really

void ShowInformation (unsigned long Money)

std::cout <K
std::cout << std::endl;

63: std:

64: std:

65:

66: std:

67: std:

68:

69: std:

70: std:

71: std:

72: std:

73: std:

74: std:

75: std:

76: std:

77: std:

78: std:

79:

80: std:

8l: std:

82: std:

83:

84: std:

85: std

86: }
new here.

88:

89: {

90:

91:

92: }

"You have :

" << Money << " dollars.";

ShowInformation shows how much money the player still has. This would be the place
to show other information like lives (if the game had lives), time played, and so on.

94
95:
96:
97:

short GetBet (void)

{

unsigned short BetType;

First Game: “Craps” a9
—'="_Ll|"n i — —T . ?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

98: /* Get bet */
99: std::cout << "Enter type of bet (1 = '6/8" 2 = '4/10"' 3 = '2/12"): ";
100: std::cin >> BetType;

101:

102: /* If bet invalid bet on 6/8 */
103: if ((BetType == 1) || (BetType == 2) || (BetType == 3))
104: {

105: return BetType;

106: '}

107: else

108: {

109: return 1;

110: 1}

111: }

And you have your first ‘game’ function. GetBet returns the kind of bet the player
wants to do. It asks for the bet type using the normal std::cin like you saw before.
The number 1 stands for 6 or 8, number 2 for 4 or 10, and number 3 for 2 or 12.
If the player doesn’t choose a valid bet, it will return by default 1, which is the 6
or 8 bet.

113: short DoDiceThrow (void)

114: {

115: short DiceValue;

116:

117: /* Get dice value */

118: srand (time (NULL));

119: DiceValue = (rand () % 11) + 2;

120:

121: /* If 4/10 get another number, this will make this
122: event more improbable so pay ratio is bigger */
123: if ((DiceValue == 4) || (DiceValue == 10))

124. |

125: srand (time (NULL));
126: DiceValue = (rand () % 12) + 1;

127: '}

128:

129: /* If 2/12 get another number, this will make this
130: event more improbable so pay ratio is bigger */

131: if ((DiceValue == 2) || (DiceValue == 12))

90

3. Functions and Program Flow

S o B

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144

This function is the core of your game. DoDiceThrow returns the random dice value
following some guidelines. It firsts get a random number between 2 and 12 using
rand () % 11 + 2. Using rand like this, you know it will return a value between zero
and ten. Since you want a value between 2 and 12, you add two to value returned

{
srand (time (NULL));
DiceValue = (rand () % 12) + 1;

if ((DiceValue == 2) || (DiceValue == 12))

{
srand (time (NULL));
DiceValue = (rand () % 12) + 1;
}
}

return DiceValue;
}

by rand () % 11.

After you get the number, you check to see if the value is either 4 or 8. If it is, you
will get another number. This is done to give lower chances to getting the number
4 or 8 since it pays more. You do the same if the number is 2 or 12 but three times

since the pay is even bigger.

146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:

unsigned short DoMoneyCalc (short Dice, short Bet, short BetMoney)

{
unsigned long MoneyEarned = 0;

nr—“ﬂ——1_r—*___L__r__EEE

LT L

/* See which type of bet the player made */

switch (Bet)

{

/* 6/8 - pay amount of 1.5:1 */
case 1:

if ((Dice == 6) || (Dice == 8))

{

MoneyEarned = BetMoney * 1.5;

}

break; break;

/* 4/10 - pay amount of 2.5:1 */

First Game: “Craps” a1

i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

161: case 2:

162: if ((Dice == 10) || (Dice == 4))
163: {

164: MoneyEarned = BetMoney * 2.5;
165: }

166: break; break;
167: /* 2/12 - pay amount of 5:1 */

168: case 3:

169: if ((Dice == 2) || (Dice == 12))
170: {

171: MoneyEarned = BetMoney * 5;
172: }

173: break;

174: default:
175: MoneyEarned = 0;

176: break;

177: }

178:

179: return MoneyEarned;
180: }

DoMoneyCalc calculates the total earnings of the player. It uses a switch statement to
check which kind of bet the player chose, and then checks to see if he won by
checking whether the dice value is any of the numbers of the bet. If it is, it calcu-
lates the earnings depending on the win ratio and returns the result. This is where
you want to add your cheating code

182: unsigned long GetAmount (void)

183: {

184: unsigned short BetAmount;

185:

186: /* Get bet amount */

187: std::cout << "Enter amount to bet (min 10 - max 100): ";
188: std::cin >> BetAmount;

189:

190: /* If bet out of range fix it */
191: if (BetAmount < 10)

192: |

193: BetAmount = 10;

194: }

g2 3. Functions and Program Flow

LfH T e e = e . A

195:

196: if (BetAmount > 100)
197: {

198: BetAmount = 100;
199: |}

200:

201: return BetAmount;
202: }

Figure 3.19

Rules of the craps
game.

‘AR N
= muxn 1083: 12

GetAmount returns the amount of money the player wants to bet. It also does a
bounds check to see if the amount the player entered is valid, and if not, fixes it.

And this is your game. A rather simple game but showing the main principles of
game programming.

Summary

You covered a lot of ground in this chapter. After reading it, you should be confi-
dent with C++ programming basics of program control and also be ready to do
small text games on your own.

You also went through your first game, Craps. This game was rather easy to imple-
ment and to play, but even so, it teaches some game fundamentals, which will be
used in more complicated games later.

Exercises 93

—'="_Ll|"n i — [?|_|—-—|_.—"[|_“15I—l_|_p—|—|_'_

Duestions and Answers

Q: Why should I use functions?

A: Functions will make your code compact, modular, and easier to maintain.
Q: Don’t default parameters limit the functionality of functions?

A: No, default parameters can be overridden if you don’t want to use them.
Q: Why use a do ... while loop as opposed to the while loop?

A:In a do ... while loop, the code after the loop is executed at least once, whereas
the while loop only runs if the evaluation expression is true.

Exercises

1. What are the parts of creating a function?
2. What is wrong with the following code?

void Function (void);
{

/..

}

3. What is the difference between a local and a global variable?
4. What is wrong with the following code?

int a,b;

a = 0;

b = 0;

while (a < 2)

{

std::cout << b << std::endl;
}

5. Create a program that uses a for loop to print the square roots of
all even numbers with a four number interval (ex: 2 6 10 14 ...) from

2 to 38.

6. For what are the three statements in the for loop usually used?

g4 3. Functions and Program Flow

LfH T e e = e . A

7. Create a program that uses a while loop to show all the even numbers from 1
to 15.

8. Modify the Craps game so the user can also bet on 3/9 with a winning ratio
of 1.7:1.

9. Modify the Craps game so when the user presses an invalid key (letter) the
program shows an error message.

10. Modify the Craps game to change the limit of money allowed to bet per
round.

= - ‘:_'._‘-v.___f]__f—‘_‘—r_'_'rﬁ‘-l_
._T'H_L_r — = = — LI — l_l—'—"_\ﬁ_ﬂ__.;d — — '—L—Lr‘_s_,_l—n\f

CHAPTER 4

IYIULTIPLE
1LES AND THE
FPREPROCESSOR

96 <. Multiple Files and the Preprocessor

==L — = — =y e

Dne of the most important characteristics of a programmer is being able to
organize projects. By separating functionality into different files, you keep the
code organized while maintaining the same overall functionality.

The C++ preprocessor is also an important tool to know because it provides some
features that can aid your programs.

Differences between
Source and Header Files

I will talk about two different files: header files and source files.

The main difference between the two is that header files are usually used for
declaring function prototypes, defining types, and classes whereas source files are
where you usually implement the functions and other code.

Table 4.1 shows a few suggestions of where things should be included.

TaBLE 4.1 Headers and Source Files

Type Location
Header includes Header
Type definitions Header
Class definitions Header
Function prototypes Header
Preprocessor directives Header
Global variables Source

Function implementation Source

Handling Multiple Files q7

J—LU_FI—QE-—LI—"_,-——|_|—-—|_,—"|J_”‘IE|—I—|_F—|—|_'_

Handling Multiple Files

Let’s go by the simple task of creating a header and source file pair containing a
couple of functions and then use them in a normal program.

The first thing to do is to add a header file to your project. In case you don’t
remember from Chapter 1, to add a file to a project you select the menu Project,
then Add to Project, and New. From the dialog box, select C/C++ Header File. You
now have your header file included in the project. Let’s add two prototypes to it:

1 /* 01 Header.h */

2:

3: double Square (double x);
4_.

5

: double Cube (double x);

This will declare two functions that you already developed in earlier chapters. Now
you need to add the function implementation to the source file. Add a new source
file to the project and type:

/* 01 Header.cpp */

1

2

3: /* Include complement header file */
4: finclude "Header.h"
5.
6
7

/* Function definition */
: double Square (double Value)
8: {
9: /* Function code */
10: double SquareReturn;
11:
12: SquareReturn = Value * Value;
13:
14: return SquareReturn;
15: }
16:
17: /* Function definition */
18: double Cube (double Value)
19: {
20: /* Function code */
21: double CubeReturn;
22:

98 <. Multiple Files and the Preprocessor
R il B Sy MR

23: CubeReturn = Value * Value * Value;
24

25: return CubeReturn;

26: }

Except for line 4, this shouldn’t be difficult to understand. You implement the func-
tions you defined in the header file. Now, what about that include in line 42 Well,
the compiler needs to know what files are related to each other. By including the
header file in the source file, you will have access to anything that is defined inside
the header file, in your case, the function prototypes. You may have also noticed
that I don’t use the normal <INCLUDE NAME> but rather quotation marks like
this: “INCLUDE NAME?”. This tells the compiler to look for the file in the current
directory as opposed to the default include header if you used <INCLUDE NAME>.

Now that you have this pair of files, you can use them in any project as long as you
include them. To test them, add a source file to the project and let’s do a small
program to see whether it is working.

1 /* 01 Main.cpp */

2

3 /* Include header file */

4: finclude "Header.h"

5:

6 /* Input/output stream header*/
7: fHinclude <iostream>

8:

9: main ()
10: |

11: double Number;

12: double SquaredNumber, CubedNumber;
13:

14: Number = 5;

15:

16: /* Call the function */

17: SquaredNumber = Square (Number);
18: CubedNumber = Cube (Number);

19:

20: std::cout << "Square of 5 = " << SquaredNumber << std::endl;
21: std::cout << "Cube of 5 = " << CubedNumber << std::endl;

22:

23: return 0;

24: '}

What Is the Preprocessor? qqg

J—LU_FI—QE-—LI—"_,-——|_|—-—|_,—"|J_”‘IE|—I—|_F—|—|_'_

r.:rh\r..-lnr'ﬂ -l.-."l,!ru-'tl:'l_Lh.'lpl:! L __ = ks Figure 4.1
Multiple files.

¢ Ly cunl e

This program is nothing new except you included the header you created so that
you could use the functions implemented there. If you want to use those functions
in other projects, you just need to copy Header.h and Header.cpp to the other pro-
ject and include them with #include "Header.h".

Figure 4.2 shows a common way various files are used together.

Figure 4.2

Using files together.

| Fiern H Fleah | [Flein | [Fietn |

| Filel.cpp ‘ | File2. cpp | | File3. cpp | ‘ File4fcpp |

What Is the Preprocessor?

If this were a child’s book, I could say that the preprocessor is a tiny elf with big
pointy ears that reads your files and performs some magic on them before sending
them to the master elf for compiling. But because you don’t live in the fantasy
world (to my sadness), let’s get back to the real world. The objective of the pre-
processor is to go through the files before compiling, and perform any changes
when it reaches a preprocessor directive.

You have been using the preprocessor already with the #include directive.

100 <. Multiple Files and the Pfeﬁrut:-es'sﬁr;'

What happens is, when the preproces-
sor finds a preprocessor instruction, it NOTE
does the necessary changes to the text
in the code. When you include the
header files using #include, you are
including all the text inside that file
into your own files.

All preprocessor directives start
with a pound symbol (#) and should
start at the beginning of the line.

— j—

By going through the files before compile time, you are able to do modifications to
the code depending on the system, compiler options, and other things.

Figure 4.3

A flowchart

Original source code .
demonstrating the

progress of the
source code.

Preprocessor
Replaces all the preprocessor cormmands

Source code with all the preprocessor
replaced ready for compilation

One of the most used preprocessor directives is the define directive, #define. Its
prototype is:
fdefine identifier token-string

This directive replaces all references to identifier by the token-string, for exam-
ple:
ftdefine PI 3.141592

Before preprocessor:

/* . */

doubTe AreaCircle;
AreaCircle = PI * Radius;
/* %/

Avoiding Multiple Includes 101

e e e = T

After preprocessor:

/* . */

double AreaCircle;

AreaCircle = 3.141592 * Radius;
/* . */

As you can see, after the preprocessor, PI was
replaced with 3.141592 as desired. This directive
can be expanded to just about everything from
strings to normal code and back. NOTE ‘
By convention, preprocessor

Here are some other examples: -
p definitions have been made

fidefine MYNAME "Bruno Sousa" all uppercase.This is how
fidefine E 2.718281 most programmers make
fidefine ESQUARED E*E their definitions, so you will
[* . %/ also, but please note they can

be lowercase or upper- and |
lowercase mixed together.

As you can see, you can use definitions that have
already been declared inside other definitions.

Avoiding Multiple Includes

One of the best uses for preprocessor directives is to prevent the same file from

being included various times. Suppose you are still working with the header file

created earlier. If you wanted to use the functions implemented in Header.cpp in
various files, you would have to include Header.h in those files. Doing this would
create a linker error since it was trying to implement the functions in Header.cpp
various times.

To prevent this from happening, you need to tell the compiler that the header is
already processed and it doesn’t need to be included again in any following files.
This can be done in two ways using the preprocessor.

Using #pragma
The first and easier way to prevent multiple header includes is to include the fol-
lowing preprocessor directive in the header file where you define the functions

prototype:

fipragma once

102 <. Multiple Files and the Pfeﬁrnt:-éé"sﬁr;' :

e e

When the preprocessor reaches this line, it will know that this file should only be
included (opened) once.

So, your original header file would then appear as follows:

/* 02 Header.h */

1
2
3 /* Include only once */
4: {ffpragma once

5:

6: double Square (double x);
7

8

: double Cube (double x);

This way, this file would be included once, preventing any linking errors.

Using #ifdef, #define,
and #endif

The other method to prevent multiple
includes is a bit more complicated but s NOTE

more common.
Most programmers prefer to use

Before going into the details of how to this type of preventing multiple
prevent multiple includes, let’s go over includes because some compilers
what each directive does. don’t support the #pragma once

directive very well or at all.

I have already described #define, so let’s
just focus on #ifdef and ffendif. The 1 M1
#ifdef prototype is:

fifdef identifier

This directive checks to see whether identifier is defined, and if so, includes the
code following, and if not, it discards it.

Now for ftendif. #endif simply ends any preprocessor ifline. For example:

ffdefine HELP

/* %/
fHifdef HELP
/% %/
std::cout << "Help me" << endl;
fendif
/% %/

Tmm-FﬁJf‘:‘”

= Avoiding Multiple Includes 103
S B e e =1 = —Lr]_

#ifdef DEBUG
/* . */
std::cout << "This is debug code." << endl;
fendif
/* . */

The preceding code line would include the code between #ifdef HELP and the first
ffendif since HELP is defined but wouldn’t include the code between # ifdef DEBUG
and ffendif since DEBUG isn’t defined.

Now, how can you use this to prevent multiple
includes? Easy, if you put all the code of each NOTE
header inside an #ifdef and ffendif block, you

could prevent it from being included in vari- if-line directives work similarly
ous files. to the normal equivalents in

code.The three if-line directives
The first step is to test whether some defini- are {if, f#ifdef, and #ifndef.

tion was defined or not, and since you are
interested that it isn’t, you can use the ! opera-
tor to include the code only if the definition doesn’t exist. If you were including
the header for the first time, then you would have to define the constant to prevent
future use. At the end of the file you would just throw an ffendif to end the first
#ifdef. This process is shown in the following code snippet:

fHifdef ! _FILENAME_H_
fidefine _FILENAME_H_

/* Header code here */
fendi

This would check to see whether _FILENAME_H_ is defined, and if it is, it just skips the
header; if it isn’t, it defines it and includes the header code.

Your Header.h would end up being something like this:
1 /* 03 Header.h */

2

3 /* Include only once */
4: {ffpragma once

5:

6: double Square (double x);
7:

8: double Cube (double Xx);

And you wouldn’t have to worry about the functions being defined multiple times.
Nice, huh?

104 <. Multiple Files and the Preprocessor

==L — = — =y e

Macros

Another use for the preprocessor is macros. Macros can replace small functions
without adding the function calling overhead.

What exactly is a macro? A macro is a way to create a definition that instead of
replacing the identifier with a number replaces it with working code that executes
a specific function.

Figure 4.4
#ilefine SQUARE(R) [2)*(x) A macro.
int % = SQUARE (10)

int = = (10Y*(10)

Macros are defined using three main parts: the macro’s name, the arguments, and
the string-token, as follows:

f#define MACRONAME(arguments) code

Taking the two examples from Header.h, you could use two macros to replace the
functions, and thus, reduce the overhead of calling the function.

For example:

double Square (double Value)
{

/* Function code */

doubTe SquareReturn;

SquareReturn = Value * Value;
return SquareReturn;

}

Would be

fidefine SQUARE(X) (x)*(x)

Which would do the exact same thing. But how does it work then? Well, when you
create a macro, the code for the macro actually replaces the macro call in your
source code, thus it’s a source level expansion. To define the macro you need to

Other Preprocessor Directives 105

J—LU_FI—QE-—LI—"_,-——|_|—-—|_,—"|J_”‘IE|—I—|_F—|—|_'_

put an argument list after the macro identifier just like in functions, but you don’t
need to define the type. These arguments are then used in the code to be
replaced. For example:

SquaredNumber = SQUARE (Number);
Would be transformed by the preprocessor to:
SquaredNumber = (Number)*(Number);

There are some disadvantages to using macros. One is the lack of type safe check-
ing. That is, the compiler doesn’t check the values passed to the macro, so if you
pass a character to a macro when you were supposed to pass a floating-point value,
it will probably cause a problem later.

I personally don’t recommend the use of macros, but in the end, it is up to you to
know what you should and what you shouldn’t use.

Other Preprocessor
Directives

There are some other preprocessor directives than the ones discussed here. Table
4.2 lists them and Table 4.3 explains the options the ffpragma directive has.

TABLE 4.2 Other Preprocessor Directives

Directive Description

fferror Produces a compiler error message
fFimport Imports a file

felif Else if

ffelse Else

ftifndef If not defined

#line Changes the internal line number

ffundef Undefines an identifier

106 <. Multiple Files and the Preprocessor

==L = = — =y e

TABLE 4.3 #pragma Options

Option Description

comment Puts a specific comment in the code

message Produces a compiler message

warning Produces a compiler warning message
Summary

This has been a small but important chapter. To be able to use multiple files in
your programs is a requirement for good code.

From now on, you will start to separate functionality into separate files so you can
reuse code without having to manually include it.

Exercises

1. Without doing multiple includes prevention, try to include Header.h in vari-
ous files and see what error it produces.

2. Using the code from Chapter 3 for the game craps, try to separate game
code in a separate header file.

3. What happens in the following line of code?

#ifndef _FILE_H
/* Header code */
ffendif

4. What is wrong with the following code?

fHifdef _FILE_H
/* Header code */
fendif

5. On your own: Try to create a small header and source file containing func-
tions to calculate the areas of a square, a rectangle, and a circle.

6. On your own: Try to produce a compiler error if STRESS identifier isn’t defined.

e R e e

e o= M M
CHAPTERSS
HRRAYSy
FPOINTERSy
AHAHND
T RINGS
L3 B
~

—'ﬁLJ-—L/jr_ —LJT ik __I = =

108 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

I his chapter goes over some very important aspects of C++, such as arrays,
pointers, and strings. By learning to understand pointers and arrays you will
be able to use advanced programming techniques that rely heavily on this material.

Additionally, a brief explanation of strings in C++ and their relationship to arrays
and pointers is given at the end of the chapter.

What Is an Array?

An array is a collection of variables of the same type and name, ordered sequen-
tially in memory. For example, if you have a set of values that represent a collection
of numbers that are related to the same thing, such as the wake-up time of each
day of the week, you could use an array of six (come on, no one wakes up early on
Sundays) elements to keep each day’s wake-up hour in each element. This would
be ordered in memory sequentially, as shown in Figure 5.1.

Arrays are very useful for all sorts of things, from look-up tables to bitmaps; you will
use arrays throughout your games.

Figure 5.1
An array in
121 |233]12] ... | 23 memory.
A t | J
Array [1] Array [..] Array [n—1]

Array [0]

Declaring and Using an Array 109

Declaring and
Using an Array

As with any variable, you need to first declare an array and then use it, and it isn’t
very different from normal variable use either.

Declaration

You declare the variable normally but after

the variable’s name, you use a number inside NOTE

brackets—the subscript. The subscript is what Like any other variable, when
defines the variable as an array and defines you declare an array, you allo-
the number of array elements. So, to declare cate a bit of memory to it.
your wake-up schedule you would do: Beware using large arrays

because the system may not
be able to allocate enough

Which would create an array of six elements memory to it, leaving you with

short WakeUp [61];

a nasty program crash right at

of type short, named WakeUp. This is called a
the start.

single-dimensional array, and the elements
are indexed 0, 1, 2, 3, 4, b.

Using
After you have your array declared, you can use it like any other variable. How?
Simple, you just include the subscript and you can use it as the variable that it is.

Taking the previous wake-up schedule example, if you wanted to set Monday’s
alarm to nine o’clock, you would do:

WakeUp [01 = 9;
Which would set the first element, assuming 0 is Monday, in the array to 9.

In C++, all arrays are indexed starting with zero and ending at the array’s size at
declaration minus one. For example:

int Days [356];

1no 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Can only be used from 0 to 355:

Days [0] = 12; /* First element */

Days [65] = 292; /* Any element between 0 and 355 */
Days [355] = 232; /* Last element */

Days [356]1 = 67; /* Error, out of range */

Now for the normal useful program, the code below calculates the cosine of
50000000 (yes, that’s a lot) random values using both a look-up table, which is cal-
culated at the beginning of the program, and using the normal cos function during
runtime (see Figure 5.2). This was (and still is for some speed intensity programs)
one of the uses for arrays some time ago, before the new gazillion MHz computers.

1. /* '01 Main.cpp' */

2:

3: /* Input output stream header file */
4: finclude <iostream>

5: /* C++ math header file */

6: #include <math.h>

7:

8: /* Start */

9: main (void)
10:

11: /* Declare Took up table */
12: double COSTable [360]; /* 360 elements for all angles between 0 and 359 */
13: int Number;

14:

15: /* Calculate look up table */

16: std::cout << "Calculating Cosine Took up table..." << std::endl;
17:

18: for (Number = 0; Number < 360; Number++)

19: |

20: COSTable [Number] = cos (Number * 3.14159 / 180);

21: }

22:

23: /* Calculate Cosine of 50000000 values using look up table
24 and then using cos */

25: std::cout << "Calculating cosine of 50000000 random values using look";
26: std::cout << " up table..." << std::endl;

27: /* Look up table */

28: for (Number = 0; Number < 50000000; Number++)

29: |

Declaring and Using an Array m

30: COSTable [rand () % 3601;

31: 1}
32:
33: std::cout << "Calculating cosine of 50000000 random values using cos";
34: std::cout << " function..." << std::endl;
35: /* cos function */
36: for (Number = 0; Number < 50000000; Number++)
37: |
38: cos (rand () % 360);
39: 1}
40:
41:
42: return 0;
43: }
\Game Programming All in Dne'Source’,Chapter_0540 ble', Figure 5.2

Calculating Cosine look up table...

Calculating cosine of 5SHPHHEBAA random values g look up tabhle... i -
Calculating cosine of 5@HAEBAAA random values using cos function... COSlne IOOk UP tab’e'
Press any key to continue

Type, compile, run, and check the
difference! Great, isn’t it?

NOTE

Don’t forget that you need to con-
vert the angles from degrees into
radians, and you do this by multiply-

You first declare a 360-element array in
line 12 named C0STable. You calculate
each of the table’s elements by using a
for loop (lines 18 through 21). The rest

. . . . ing the degree by 1 and dividing the
is just shOW}ng the time dlfference' result by 180. Check the math chap-
between using the look-up table (lines ter for more information on degrees
28 through 31) and the normal cos airadiansy

function (lines 36 through 39) by using
them both 50000000 times.

e

12 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

I'll leave it as homework to change the code to print each number calculated, so
when your friends enter your room you can pretend you are a genius who is actu-
ally reading the number and taking notes.

Initializing an Array

You can also initialize the array elements at declaration time similarly to how you
did with single variables. You declare all or part of the array only by following the
declaration with the assignment operator and a set of values enclosed in braces and
separated by commas. For example:

short WakeUp [6]1 = { 9, 8, 8, 9, 9, 12 };

This code would declare the WakeUp array but also initialize each of the array’s ele-
ments to the values in the list. This would have the same effect as:

short WakeUp [6];
WakeUp [0] = 9;

WakeUp [1] = 8
WakeUp [2] = 8
WakeUp [3] = 9;
WakeUp [41 =9
WakeUp [5] =1

You can also initialize part of the array by supplying fewer elements than the array
size.

The other way to declare an array is to leave the subscript empty but use the initial-
ization to create the array, for example:

short WakeUp [1={ 9, 8, 8, 9, 9, 12 };

Would create the exact same array as before. When you don’t supply the array’s
subscript, the compiler creates an array large enough to hold the number of ele-
ments you initialize it with.

Multi-Dimensional
Arrays

The last topic I want to talk about before moving to pointers is multi-dimensional
arrays. Multi-dimensional arrays have two or more (as the name states: multi)
subscripts.

Multi-Dimensional Arrays n3

sy = [—= LI = —1Lr],

Imagine a game playfield that is made of a grid of squares, sort of like a checkers
or chess board. The total size of the field is ten units wide and eight units tall. You
can declare this playfield as:

short Playfield [101 [81;
Where you could use the array like:

Playfield [0] [0]
Playfield [1] [6]
Playfield [8] [2]
Playfield [9] [3]
Playfield [9] [7]

’

I
[N SIS, B

For storing the position of the players in the playfield.

Figure 5.3

Playfield and arrays.

(01 [0] [0] [1] (91 [0]
(01 1]

(01 71 (91 [71

n4a 5. Arrays, Pointers, and Strings

[== = 5 I — =L re

You can also initialize a multi-dimensional array using either:

short Square [2] [2] = {0, 1, 2, 3};
Or:

short Square [2] [2]1 = { {0, 1} , {2, 3} };

That would be the same as:

short Square [2] [2];
Square [0] [0] = 0;

Square [0] [1]
Square [1] [0]
Square [1] [1]

s

1
2
3

Both ways initialize the array equally, but the second is probably better because it
enables you to separate each subscript array into braces making the code clear.

Picking up the cosine example, let’s create a look-up table for the cosine, sine,
and tangent of all the values between 0 and 359 using a multi-dimensional array.
The first subscript value will specify the type of values the second subscript holds;
for example, Table [1] [32] would refer to the sine of the angle 32 as can be
seen next:

/* '02 Main.cpp' */

1
2
3: /* Input output stream header file */
4: {finclude <iostream)

5: /* C++ math header file */

6: #include <math.h>

7

8

. /* Use definitions so you don't need to worry what value is which
9: table */
10: fdefine COSTABLE 0
11: ftdefine SINTABLE 1
12: fidefine TANTABLE 2
13:
14: /* Define PI */
15: jfidefine PI 3.14159
16:

__JE{__Lufj______L_rE;;__7:::

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27 :
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:

{

}

Multi-Dimensional Arrays ns

/* Start */
main (void)

IJ—|I_I-——|_|—-—|_.—"”_”‘|5|—I—|_F—|—|_'_

/* Declare look up table */
double Table [3]1[360]; /* 360 elements for all angles between 0 and

int Number;

359 times three for cosine, sine
and tangent */

/* Calculate Took up tables */
std::cout << "Calculating Took up tables..." << std::endl;

for (Number
{

0; Number < 360; Number++)

Table [COSTABLE] [Number] = cos (Number * PI / 180);

Table [SINTABLE] [Number]

sin (Number * PI / 180);

/* Check if number is different than 90 since tan (90) is not

valid */

if (Number != 90)

{

Table [TANTABLE] [Number] = tan (Number * PI / 180);

}
}

/* Print cosine, sine and tangent of ten random values */

for (Number =

{

0; Number < 10; Number++)

int TempNumber = rand () % 360;

std::cout

std::cout

std::cout

std::cout

std::cout
}

return 0;

K
K
K
K
K

"Number = " << TempNumber;

" cos = " < Table [COSTABLE] [TempNumber];
" sin =" < Table [SINTABLE] [TempNumberl];
" tan = " << Table [TANTABLE] [TempNumber]
std::endl;

Arrays, Pointers, and Strings :

Press any key to continue_

Calculating look
Number = 41 cos

sin = B.656@859 tan = @.869286

—-B.29237 sin
-A.829839
—A.766847
.B174537
—0.438374
8.743142
—8.951857

= B8.956385 tan = —3.270887

—A.55919 tan

—0.642785 tan

-799848 tan =
—B.898792 tan -a5829
—8.66%9134 tan = —A.700413
—@A.38%814 tan -324%16
—B.615665 tan = —A.781293
—-B.275642 tan = -B.286751

Figure 5.4

Cosine, sine, and
tangent look-up
table.

There isn’t anything new here either. You
declare a multi-dimensional array with three
subscripts, each forming an array of 360 ele-
ments in line 21. You then calculate the look-
up table for each trigonometric function
(lines 29 through 40) and output the value
of 10 random numbers between 0 and 355.

NOTE

Note that if the Number is 90,

you don’t calculate the tangent
for it because the tangent of 90
is invalid.

Pointers to What?*?

As you have seen before, when you declare a variable, the compiler reserves a space
in memory for it. That space has a location in the computer memory cleverly
called address (no, it isn’t a high-tech name). The address of a variable is the place
it occupies in memory.

Figure 5.5

A pointer pointing to

So, what is a pointer? Well. . . . A pointeris a variable that holds the address of
another variable. Neat, huh? This may not make much sense but take a look at
Figure 5.5.

pValue Value

a variable.

Pointers and Variables 17

sy = [—= LI = —1Lr],

The pointer pValue holds the value of the address of the Value variable.

It might not be clear why I use pointers, but you will see in a little while how they
are useful, so stick around!

Pointers and Variables

Pointers are like normal variables but with a few more advantages and also some
problems.

Declaring and Initializing

Declaring a pointer is similar to declaring normal variables, except that you place
an asterisk before the variable name. For example:

short * Value;
unsigned long * Money;

Declares two pointers, one named Value that points to a variable of type short, and
one named Money which points to a variable of type unsigned Tong. There isn’t much
to learn about declaring pointers, is there? I wish using them were as easy!

Initializing pointers is another story. Trying to guess a variable’s address would be
tough. What you need is an operator that tells you the address of a variable, hence
the address-of operator (&). When placed before a variable, the address-of operator
returns the address of a value instead of the value the variable holds. For example,
the following piece of code would initialize PointerValue to the address of the vari-
able Value, thus, making it point to the variable.

short * PointerValue;
short Value;
PointerValue = &Value;

Using Pointers

Using pointers isn’t difficult either. You can use a pointer to change the value of
the variable it points to with the indirection operator (*). You use the actual pointer if
you want to deal with the address of the variable it points to, or you use the indirec-
tion operator and the pointer to use the value that the variable the pointer points
to holds.

na 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Here is a simple example that shows how to use pointers as normal variables:

/* '03 Main.cpp' */

1

2

3: /* Input output stream header file */
4: ffinclude <iostream>
5.

6

7

/* Start */
: main (void)
8: {
9: /* Declare a normal int and a pointer to an int */

10: int Value;

11: int * PointerValue;

12:

13: /* Init Value to 23 and PointerValue to the address of Value */
14: Value = 23;

15: PointerValue = &Value;

16:

17: /* Print value of Value using the variable and using the indirection
18: operator in the pointer */

19: std::cout << "Using Value = " << Value << std::endl;

20: std::cout << "Using indirection operator = ";
21: std::cout << *PointerValue << std::endl;

22:

23: /* Print address of Value using the address-of operator and using the
24 pointer value */

25: std::cout << "Using address-of operator = " << &Value << std::endl;

26: std::cout << "Using PointerValue = ";
27: std::cout << PointerValue << std::endl;
28:

29: return 0;

30: }

This program starts by declaring a variable and a pointer and then initializing the
variable to 23 and the pointer to the address of the variable using the address-of
operator (lines 10 through 15). Then you output the value of the variable using
direct access (line 19) and indirect access (line 20) and the address of the variable
using the address-of operator (line 25) and the pointer (line 27).

Pointers and Arrays nga

sy = [—= LI = —1Lr],

Figure 5.6
Ua&ue = 2s -
indirection operator = H H
address—of operator = BA1Z2FF?C BGSIC POlnterS.
Pointerlalue = BB12FF?C
any key to continue

Pointers and Arrays

Up until now, using pointers wasn’t anything that would benefit you. In this section
you will learn how pointers and arrays are used to achieve some effects you couldn’t
normally receive.

Relation of Pointers to Arrays

When you access an array using the subscript, you are telling the computer to go to
the n-th element of the array. As you know, an array is ordered sequentially, so you
are advancing memory from the start of the array to the n-th element by the size of
the array element. Now, if you don’t supply any subscript to the array name, you
are actually using a pointer.

How can this be? Well. . . . If you think that an array is a sequential block of mem-
ory, each array element has an address in memory. If you don’t use the subscript
when using the array, the value that the array returns isn’t the value of the first ele-
ment but the address of the first element. For example, in the following code:

int * Pointer;
int Array [101;
Pointer = &Array [0];

120 5. Arrays, Pointers, and Strings
=" =—— T | — =y e

Pointer points to the first element of Array. This is the same as doing:

int * Pointer;

int Array [10];

Pointer = Array;

Meaning Pointer points to the first element of Array. This code is illustrated in
Figure 5.7.

Figure 5.7

Arrays and pointers.

to1| rimy r.1} C.1) C.1f C.1]

L Pointer

Passing Arrays to Functions

As you learned in Chapter 3, you can pass values to functions as arguments but
unfortunately, you can only pass a single value to them.

The only way to pass an array to a function is using a pointer to the array as an
argument. When passing a pointer to the function, you are letting the function
know the address of the array, and as such, you can use it inside the function.
There is one problem when passing arrays as pointers: the function only knows
about the starting address of the array. It has no information on the size of the
array whatsoever.

You can handle this problem one of two ways. The first, and easiest, is to make sure
an array of the correct size is always passed to the function. This is the approach I
will be using more later because it saves you the trouble of passing unnecessary

Figure 5.8

Passing arrays.

4 Byes | 4 Dotes | 4 Bes | 4 Bytes

_

Pointers and Arrays 121

sy = [—= LI = —1Lr],

arguments to the function and additional tests inside the function. The other way
to handle the problem is to pass an extra argument to the function holding the
number of elements in the array, as shown in the following program that calculates
the average of all the values inside an array:

1 /* '04 Main.cpp' */

2

3: /* Input output stream header file */

4: #include <iostream>

5:

6: double Average (int * ListValues, int Elements);
7

8 /* Start */

9: main (void)
10:

11: /* Declare a normal int and a pointer to an array of ints */
12: int Values [5];
13: int NumberValues;

14:

15: /* Get five values from user*/

16: for (NumberValues = 0; NumberValues < 5; NumberValues ++)
17: |

18: std::cout << "Enter value " << NumberValues + 1 << " : ";
19: std::cin >> Values [NumberValues];

20: }

21:

22: /* Calculate average */

23: double AverageValues;

24: AverageValues = Average (Values, 5);

25:

26: /* Print average */

27: std::cout << "The average of all the values is : " << AverageValues;
28: std::cout << std::endl;

29:

30: return 0;

31: }

32:

33: /* Calculate average */

34: double Average (int * ListValues, int Elements)
35: {

36: double Total = 0;

122 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

37: int NumberElement;

38:

39: /* Add all values to Total */

40: for (NumberElement = 0; NumberElement < Elements; NumberElement ++)

41: |

42: Total += ListValues [NumberElement];
43: }

44 /* Calculate average and return it */
45: return Total / Elements;

46: }

ame Programming &ll in One',Source),Chapk | Al Flgure 5.9
value
r value = .
~ value 3 : ¢ Passing arrays to
r value 4 =
r yvalue 5 = 2
The average of all the values is :
Press any key to continue

functions.

If you have been paying attention, this code should be a snap to you. The entire
program is basically a re-cap of all the material covered until here except the fact
that I pass an array to a function (line 24) to calculate the average of the values
and not use a loop inside the main code. I then use that array and the number of
elements passed to Average to calculate the actual average of the array elements
(lines 34 through 46).

Declaring and Allocating
Memory to a Pointer

Having arrays is great, but it leaves you with a small problem. Their size needs to be
decided when you compile the program. If you create an array of ten elements, you
can’t change it during program execution. This is where dynamic memory comes in.

Declarlng andAllucatlng Memory to a Pointer 123

Allocating the Memory

When you declare a pointer, the compiler only reserves memory for the pointer
itself. You want to make that pointer point to a block of memory allocated by you.
To do this, you need to use the operator new, as follows:

AddressOfMemory = new VariableType;
Or:

AddressOfMemory new VariableType [NumberOfObjects];

new returns the address of the allocated memory object(s). You can work with new
two ways. You either allocate memory for just one object, or you allocate memory
for many, which makes the pointer work like an array.

Here are a few examples:

int *Age = new int; NOTE

short * WakeUp = new short [6];

float * Ratios = new float [71: The amount of memory used when
working with dynamic memory is

The preceding code dynamically allo- the same as if you used a normal

cates an int and points Age to it. It array plus a small amount that holds

would also allocate six shorts as an array the information about the memory

and point WakeUp to the first element of allocated for the operating system

the array. The last line would also point to track it.

Ratios to the first element of a dynami- You don’t need to concern yourself

cally allocated array of floats. about this unless you are writing

your own memory manager.

Freeing ‘

the Memory

If you allocate memory in your programs, you also need to de-allocate it when it’s
no longer needed, which is done by calling the operator delete. The delete opera-
tor is called using the pointer storing the address of the allocated memory, such as:

delete PointerToObject;
Or:
delete [] PointerToObject;

In case you used the new [] operator to allocate the memory.

124 5. Arrays, Pointers, EII'IdStI:II‘I

_1_J_l——q__J‘1--r————EEEEEEL__I““HW———LJ——a L —— 5

NOTE

Each new call must be accompanied by a delete call, and each

new [] call must be accompanied by a delete [] call. If you
use the [] operator when allocating memory, you also need
to use it when releasing the memory.

Use the example given previously and modify it to use a dynamic array of values
chosen by the user:

/* '05 Main.cpp' */

1
2
3: /* Input output stream header file */

4: Jinclude <iostream>

5:

6: double Average (int * ListValues, int Elements);
7
8 /* Start */

9: main (void)

10: {

11: /* Declare a pointer to an int */

12: int * Values;

13: int NumberValues;

14: int TotalValues;

15:

16: /* Get number of values */

17: std::cout << "Enter number of values : ";
18: std::cin >> TotalValues;

19:

20: /* Dynamically allocate the array */
21: Values = new int [TotalValues];

22:

23: /* Get five values from user*/

24: for (NumberValues = 0; NumberValues < TotalValues; NumberValues ++)
25: |

26: std::cout << "Enter value " << NumberValues + 1 << " : ";
27: std::cin >> Values [NumberValues];

28: }

29:

Declaring and Allocating Memory to a Pointer 125

sy = [—= LI = —1Lr],

30: /* Calculate average */
31: double AverageValues;
32: AverageValues = Average (Values, TotalValues);

33:

34 /* Print average */

35: std::cout << "The average of all the values is : " << AverageValues;
36: std::cout << std::endl;

37:

38: /* Free the memory used by the array */
39: delete [] Values;

40:

41: return 0;

42: '}

43:

44. /* Calculate average */

45: double Average (int * ListValues, int Elements)
46: {

47:. double Total = 0;

48: int NumberElement;

50: /* Add all values to Total */
51: for (NumberElement = 0; NumberElement < Elements; NumberElement ++)

52: |

53: Total += ListValues [NumberElement];
54: }

55: /* Calculate average and return it */
56: return Total / Elements;

57: }

.ame Programming All in One'Source’\Chapter_ ynamic Memor Flgure 5. I 0
» numher of values : §
3

1= .
» yalue 2 = 78 Dynamlc memory.
r value 3 = 2
» value 4 = 3
r value 5 = 1

r value

The average of-all the values is : 17.4
Press any key to continue

126 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

This program does the same thing as before, but this time it asks the user how
many values he wants to enter (line 18) and then allocates the memory needed
using the new [] operator (line 21).

In the end of main, you de-allocate the memory using the operator delete [].

Pointer Operators

Now that you know what pointers are, you should go over pointer operators. No,
don’t worry, it’s not that bad. Pointer operators enable you to make some advanced
use of pointers such as comparison or incrementing.

Only nine operators work with pointers, as shown in Table 5.1

Using pointer operators is pretty easy. The assignment, equality, and not equal
operators work exactly as they do with the normal value variable operators. You
already used the indirection and the address-of operators but just in case you’re
rusty, both these operators are used before the pointer name and the indirection

TABLE 5.1 Pointer Operators

Operation Symbol Description

Assignment = Assigns a value to the pointer

Equality == Evaluates whether operands are equal

Not equal 1= Evaluates whether operands are different
Increment ++ Increments the pointer’s address by one
Decrement - Decrements the pointer’s address by one
Addition + Adds a value to the operator address
Subtraction - Subtracts a value from the operator address
Indirection i Returns the value the pointer points to

Address-of & Returns the address of a pointer

Pointer Operators 127

sy = [—= LI = —1Lr],

operator returns the value of the variable that the pointer points to, and the
address-of operator returns the address of a variable or pointer.

Before moving to the last four operators let me explain something. When you work
with arrays, the memory for each element is organized sequentially, but this doesn’t
mean that each element is only a byte away from the last one. As you saw in
Chapter 2, each type of variable has a certain size. Take a look at Figure 5.11 to see
what I mean.

As you can see, an array of chars is organized one byte after another, while an array
of floats has a four-byte gap between each element. If you think of it, it makes
sense. Because each variable needs four bytes, it’s only reasonable that the next ele-
ment needs four bytes also, so there is a four-byte space between them.

Okay, now that you have been through that, it’s time to get back to the operators.

When you use the increment and decrement operators, you increment your
pointer by the size of the variable it points to. Don’t understand? Don’t worry, just
take a look at Figure 5.11. If pAges points to 0x0001AF02, or 110338 in decimal,
and you want to increase pAges, you will increase it by one so that it points to
110339, right? Right, now pick the pInterest pointer. If you increase this pointer,
you don’t want to move just one byte, but four, so you can make pInterest point to
the next element in the array. So the original address would be increased by four
bytes, as shown in Figure 5.12.

Figure 5.11
Each variable type uses a
3 32132.354 .
different amount of memory.
L char L float
1 byte 4 bytes

Figure 5.12

Increasing the pointer will
make it jump four bytes.

128 5. Arrays, Pointers, and Strings

[== = 5 I — =L re

This same concept is used in all the remaining operators. If you decrease the
pointer, you decrease it by the size of the variable it points to. If you want to use the
addition or subtraction operators, you can do the following:

pAge = pAge + 2;
pInterest = plInterest - 9;

Which would increase pAge by 2, and would decrease pInterest by 36 (9 * sizeof
(float)), or 9 floats.

Take a look at the following program that fills an array with random values and
uses pointer arithmetic to print the array’s values.

/* '06 Main.cpp' */

1

2

3 /* Input output stream header file */
4: {finclude <iostream>
5.

6

7

/* Start */
: main (void)
8: {
9: /* Declare an array of ints */

10: int Values [10];
11: int * PointerValues;
12: int NumberValues;

13:

14: /* Initialize the pointer to the first element of array */
15: PointerValues = Values;

16:

17: /* Fi1l in array with random values */

18: for (NumberValues = 0; NumberValues < 10; NumberValues ++)
19: |

20: Values [NumberValues] = rand () % 1000;

21: 1}

22:

23: std::cout << "Array \tIndirection \tAddress" << std::endl;
24

25: /* Print array using normal array accessing and pointer arithmetic */
26: for (NumberValues = 0; NumberValues < 10; NumberValues ++)
27: |

28: std::cout << Values [NumberValues] << "\t";
29: std::cout << *PointerValues << "\t\t";
30: std::cout << PointerValues++ << std::endl;

Manipulating Memory 129

sy = [—= LI = —1Lr],

31: 1}

32:

33: return 0;
34: }

Figure 5.13
Address
BA12FF58 . . .
@@12FF5C Pointer arithmetic.
#A12FF68
HA12FF64
BA12FF68
BA12FF6C
#812FF78
HA12FF?74
BA12FF?78
B812FF?C

Press any key to continue

The main part of this program is lines 28, 29, and 30. In line 28, you print the
value of the array normally. In line 29, you print the value of the variable
PointerValues points to, which is the first element of the array. In line 30, you print
the value of PointerValues, which is the address it points to, and then increase the
pointer. In the next iteration of the for loop, PointerValues will point to the second
element of the array because you increased it, and so on.

Manipulating Memory

Sometimes it is useful to copy a partial or an entire array to another one or some-
times just set all the array elements to a specific value. The first thing you might
think is “Let’s use a loop.” Although this is possible, if you are talking about a very
big array, it may be a slow thing to do. For this, there are two nice functions you
can use.

memcpy

The first function you should see is mempcy. mempcy enables you to copy a number of
bytes from a buffer to another and its prototype is:

void * mempcy (void *dest, const void *src, size_t count);

130 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Where the first parameter is a pointer to the destination buffer, the second para-
meter is a pointer to the source buffer, and the last parameter is the number of
bytes to copy.

This function returns a pointer to the destination buffer.

If, for example, you have an array of ints of size 10, and you wanted to copy the
first half of the array to the second half, you could do something like:

int Buffer [10];
/* Buffer initialization */
memcpy (& (Buffer [5]1), & (Buffer [0]), sizeof (int) * 5);

Which would take as the destination buffer a pointer to the sixth (remember that
C++ arrays start at zero) element of the buffer, and would take as the source para-
meter the first element of the array, and copy five elements from the start to the

middle.
You had to add the number of elements times the = =
size of an int since memcpy works in bytes. Because TIP

you want to copy five ints, you need to copy five
times the size of an int bytes. This is shown in
Figure 5.14.

A buffer is simply a
sequence of data, in this
case, a sequence of bytes.

1 1

Figure 5.14
Copying the first half

LT] of the array to the
second half.

memset

The second method I want to cover is memset. memset enables you to set a partial or
an entire buffer to a specific value. It is defined as:

void * memset (void *dest, int c, size_t count);

Where the first parameter is the pointer to the buffer you want to set, the second is
parameter of the value you want to set the buffer with, and the last parameter is the
number of bytes you want to set. This function returns a pointer to the buffer.

i e Strings 131

If you wanted to clear an entire array to the value 0, you could do:

int Buffer [123];
memset (Buffer, 0, sizeof (int) * 123);

Which would set all the data in the buffer to 0.

Strings

One of the biggest complaints C++ pro- |88y Lo 2§ 3

grammers have (especially program- C++ Standard Template Library
mers with backgrounds in BASIC or (STL) has a String type. STL is part
Pascal) is the fact that C++ doesn’t have of the C++ language; however, it’s

a native string variable type. beyond the scope of this book

because it’s based on templates and
advanced use of classes.

Strings and Arrays

Since C++ doesn’t have a native string type, another method is used to hold strings.
This is where arrays come in.

If you think of it, a char is a normal character like your letters; isn’t it reasonable to
say an array of chars is a string? I think so. Take a look at Figure 5.15.

So, an array of chars can be a string, but what is that funny \0 at the end? \0 is
called the NULL-terminating character. It tells the system that the string ends there.

Figure 5.15

An array of characters.

132 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Using Strings
Using strings isn’t much different from using normal variables. You just need to
pay some special attention to some cases.

Strings and Arrays

As you have already seen, strings are represented in C++ as arrays. If, for example,
you wanted to create a string storing the phrase “C++ is great”, you would type the
following:

char Phrase [13] = "C++ is great";

Which would create an array storing 13 elements, namely the phrase. Now you may
be asking, if the phrase “C++ is great” has only 12 characters, why do you allocate
13 elements? As said before, each string must be terminated with the NULL-termi-
nating character. When you create a string using quotation marks, C++ automati-
cally adds the NULL-terminating character to the string. So in your case, it would
really be "C++ is great\0".

String Allocation at Compilation

You can also create strings using pointers. For example:
char *Phrase = “C++ is great”;

Would create the same string as before. The memory for these types of strings is
allocated automatically by the compiler at load time.

How does this work? Well, when you run a program on your computer, the entire
executable is usually loaded to memory. So every single byte of code of your pro-
grams is in memory, including "C++ is great". The program makes the Phrase
pointer point to that place in memory.

Input and Output

Using strings for input and output is basically the same as other variables. You use
both the insertion and extraction operator like before, for example:

char Name [255];

std::cout << "What Is your first name?" << std::endl;
std::cin >> Name;

std::cout << "Your first name is " << Name << std::endl;

Strings 133

sy = [—= LI = —1Lr],

Would declare an array of 255 elements, since it is for a string, 254 characters plus
the NULL-terminating character. It would then ask for the user to type his name,
and would output it afterward.

String Operations

Apart from the basic string manipulation that C++ provides you, there are a few
more string operations that are useful.

strcpy

The first error a programmer may incur when working with strings is trying to copy
a string to another string using the assignment operator. Unfortunately, it isn’t that
simple. Strings are stored as arrays, so you need a way to copy the part of the array
of interest, namely, all the elements up until the NULL-terminating character.

This can be done using strcpy. strcpy enables you to copy a string to another until
the NULL-terminating character is found. Its prototype is:

char * strcpy (char * strDestination, const char * strSource);

This function takes two parameters. The first parameter is a pointer to the string to
where you want to copy the original string. The second parameter is a pointer to
the original string. strcpy also returns a pointer to the destination string.

Here is a small program that uses strcpy to copy a string to another:

/* '07 Main.cpp' */

1
2
3: /* Input output stream header file */
4: finclude <iostream>
5:
6 /* Start */
7: main (void)
8: {
9: /* Declare a string */
10: char String [2551;
11: char Test [255];
12:
13: /* Get a string from the user and copy it to String */
14: std::cout << "Type any string: ";
15: std::cin >> Test;

134 5. Arrays, Pointers, and Strings :
=" =—— T | — =y e

16:

17: strcpy (String, Test);

18:

19: /* Output both strings */

20: std::cout << "Test string: " << Test << std::endl;
21: std::cout << "Input string: " << String << std::endl;
22:

23: return 0;

24: '}

ame Programming All in One'\Source)\Chapter_05 Flgure 5.16
ing: leeeeeee

Weeeeeeeee o
Input string: Ueeeeeeeee Stl"CDy.
Presz any key to continue

The only thing to pay attention to is line 17 where you use strcpy to copy the input
string to String array.

strncpy
strncpy works like strcpy with the difference that it enables you to specify the maxi-
mum number of characters to be copied. Here is the prototype:

char * strncpy (char * strDestination, const char * strSource, size_t count);

strncpy is similar to strcpy but has an extra
parameter, count, which specifies the maxi-
mum number of characters to copy.

NOTE

size_t is defined in C++ as a

normal int type variable. It is
used in C++ functions usually to
specify sizes of all types.

Strings 135

sy = [—= LI = —1Lr],

For example:

char * StringSource = "Hello World!";
char StringDest [9];
strncpy (StringDest, StringSource, 8);

Would copy only the first eight characters of StringSource to StringDest, leaving this
one with the string "Hello Wo".

strien

Sometimes it is pretty useful to know how many characters a string has. Don’t con-
fuse this with the size of the array. The string length is the character count until the
NULL-terminating character is found. This can be done with strlen, the prototype is:

size_t strlen (const char * string);

This function takes as the only parameter a pointer to the string you want to know
the length of, and returns the number of characters until the NULL-terminating
character.

The following example takes a string as input from the user, and uses the string’s
length to create a dynamic array to hold the string. The dynamic array is more effi-
cient than using a big array because it has the exact memory needed for the string:

/* '08 Main.cpp' */

1

2

3: /* Input output stream header file */
4: fHinclude <iostream>
5.

6

7

/* Start */
: main (void)
8: {
9: /* Declare a string and a pointer to a char */
10: char Test [255];
11: char * String;
12:
13: /* Get a string from the user */
14: std::cout << "Type any string: ";
15: std::cin >> Test;
16:
17: /* Use length of string to allocate the new string */
18: String = new char [strlen (Test) + 11;
19: strcpy (String, Test);

136 5. Arrays, Pointers, and Strings
=" =—— T | — =y e

20:

21: /* Output both strings */

22: std::cout << "Test string: " << Test << std::endl;

23: std::cout << "Input string: " << String << std::endl;

24: std::cout << "String length: " << strlen (Test) << std::endl;
25: delete [] String;

26:

27: return 0;

28: }

ame Programming All in One\Source)\Chapter_)ebug Figure 5.17

strien.

Prezz any key to continue

Nothing new here either except the fact that you use the string’s length to create
another dynamic string by first getting a string from the user in line 15 using the
extraction operator. You then create a dynamic array in line 18 the size of the
string’s length plus one for the NULL-terminating character.

strcat

Another nice thing to know is how to concatenate two strings. This can be done
using the function strcat:

char *strcat (char *strDestination, const char *strSource);

strcat takes two parameters, the destination string, which should already contain
the original string and the source string, which will be concatenated to the destina-
tion string. strcat also returns a pointer to the destination string.

The following program gets two strings from the user and concatenates them:

1. /* '09 Main.cpp' */

|

Strings 137

IJ—|I_I-——|_|—-—|_.—"|J_”‘|5|—I—|_F—|L

2:

3: /* Input output stream header file */
4: {Hinclude <iostream)

5:

6: /* Start */

7: main (void)

8: {

9: /* Declare three strings */

10: char FirstString [255];

11: char SecondString [255];

12: char FinalString [2551;

13:

14 /* Get two strings from the user */
15: std::cout << "First string: ";

16: std::cin >> FirstString;

17: std::cout << "Second string: ";

18: std::cin >> SecondString;

19:
20: /* Concatenate two strings */
21: strcpy (FinalString, FirstString);
22: strcat (FinalString, SecondString);
23:

24 /* Output final strings */

25: std::cout << "Final string: " << FinalString << std::endl;
26:

27 return 0;

28: }

Figure 5.18

strcat.

gz
Final string: HiThere
Press any key to continue_

138 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

The only thing to point out here is lines 21 and 22 where you first copy FirstString
to FinalString and then concatenate SecondString to FinalString.

strncat

strncat works like strcat but specifies the maximum characters to append to the
original string. Its prototype is:

char *strncat (char *strDest, const char *strSource, size_t count);

Which works similarly to strcat with the difference that it takes an extra parameter
which is the number of characters to append.

For example:

char * StringA = "Hello World!";

char * StringB = "It's cold out here.";
char StringDest [255];

strcpy (StringDest, StringA);

strncat (StringDest, StringB, 9);

Would first copy StringA to the destination string, StringDest, and then use strncat
to append nine characters from StringB to the destination string. In the end,
StringDest would be “Hello World!It's cold” only.

strcmp

The strcmp C++ function enables you to compare two strings to determine whether
they are exactly the same. It’s defined as:

int strcmp (const char *stringl, const char *string2);

Where the two parameters are pointers to the strings you want to compare. strcmp
returns an int that specifies whether the strings are equal. If strcmp returns 0, the
strings are equal. If strcmp returns a value less than 0, stringl is less than (first char-
acter that isn’t equal has a lower ASCII value than the other) string2. If strcmp
returns a value greater than 0, then string?2 is greater than stringl.

The following program asks the user for two strings and checks whether they are
equal or not:

1: /* "10 Main.cpp' */

2:
3: /* Input output stream header file */
4: finclude <iostream>

Strings 139

sy = [—= LI = —1Lr],

/* Start */
main (void)

{

/* Declare two strings */

10: char FirstString [255];
11: char SecondString [255];
12:
13: /* Get two strings from the user */
14: std::cout << "First string: ";
15: std::cin >> FirstString;
16: std::cout << "Second string: ";
17: std::cin >> SecondString;
18:
19: /* Compare the two strings */
20: if (false == strcmp (FirstString, SecondString))

W 00 ~N o o1

21: |

22: std::cout << "Strings match!" << std::endl;

23: 1}

24: else

25: |

26: std::cout << "Strings don't match!" << std::endl;
27: 1}

28:

29: return 0;

30: }

.ame Programming All in One'Source'\Chapter_ np',Debug Flgure 5. I 9
i 1-stdst1-:i.ng: Bgunu
econd string: Sousa
Strings don't match? Str‘cmp‘
Press any key to continue_

140 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

You are probably bored by now, but there isn’t anything remarkably new here
either. You just get two strings from the user (lines 15 and 17) and then use strcmp
to see whether they are exactly the same (line 20).

strncmp

As before, there is a function to compare two strings using only a maximum num-
ber of characters: strncmp. Its prototype is:

int strncmp (const char *stringl, const char *string2, size_t count);

Which works the same way as strcmp but taking the extra parameter to check how
many characters it should compare.

For example:

char * StringA
char * StringB
int IsEqual;

IsEqual = strncmp (StringA, StringB, 5);

"Hello Anna!";
"Hello John.";

IsEqual would be zero since strncmp only compared the first five characters of both
strings, and since they are equal, it returns 0.

strchr

strchr enables you to check whether a certain character exists in a given string.
This can be extremely useful if you are doing games that use string commands for
messages. strchr is defined as follows:

char *strchr (const char *string, int c);

Where the first parameter is a pointer to the string to check and the second para-
meter is the character to look for. strchr returns a pointer to the first occurrence
of the character in the string.

The following example asks the user for a string and then a character and deter-
mines whether the character exists in the string:

/* '"11 Main.cpp' */

1
2:
3: /* Input output stream header file */
4: finclude <iostream>

5

sy = [—= LI = —1Lr],

10:

12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:

W 0O N o

Strings

/* Start */

: main

{
/*
char
char

/*

std::
std::
std::
std::

/*
if (
{

std
}
else
{

std
}

(void)

Declare a string */
String [2551;
Character;

Get a string and a character from the user */
cout << "String: ";

cin >> String;

cout << "Character: ";

cin >> Character;

Check to see if character exists on the strings */
0 == strchr (String, Character))

::cout << "Character isn't part of the string!" << std::endl;

::cout << "Character is part of the string!™ << std::endl;

return 0;

}

Ch.

ame Programming All in One'Source’\Chapter_05

ng: Sneeze?

acter: e

Character iz part of the string?
Press any key to continue

Figure 5.20

strchr.

1941

192 5. Arrays, Pointers, and Strings

:::r__Ezgj__r_____JﬂL”J——1;L__

Yes, another boring program. In this one you get a string and a character from the
user (lines 15 and 17) and then use strchr (line 20) to see whether the character

the user typed exists in the string.

strstr

strstr works similarly to strchr but instead of finding the first occurrence of a
character in a string it finds the first occurrence of another string. It is sort of like

strcmp but does partial comparison. The strstr prototype is:

char *strstr (const char * string, const char * strCharSet);

Where the first parameter is a pointer to the string to be searched and the second
parameter is a pointer to the sub-string to look. strstr returns a pointer to the first

occurrence of the sub-string inside the first string.

The following program asks for a string and a search sub-string from the user and

checks whether the sub-string exists in the first one:

1 /* '12 Main.cpp' */

2

3: /* Input output stream header file */
4: #include <iostream>

5:

6 /* Start */

7: main (void)

8: {

9: /* Declare two strings */

10: char FirstString [255];

11: char SecondString [255];

12:

13: /* Get two strings from the user */

14: std::cout << "First string: ";

15: std::cin >> FirstString;

16: std::cout << "Search string: ";

17: std::cin >> SecondString;

18:

19: /* Check for second string occurrence */
20: if (false == strstr (FirstString, SecondString))
21: |

22: std::cout << "Second string isn't part of the string!"™ << std

c:endl;

Strings 143

sy = [—= LI = —1Lr],

23: 1}

24: else

25: |

26: std::cout << "Second string is part of the string!" << std::endl;
27: 1}

28:

29: return 0;

30: }

.ame Programming All in One'Source’\Chapter_ bug' Figure 5.2 I

ring: Bruno
tring: ru
Second string iz part of the string? StrStr'
Press any key to continue_

Again, nothing new, you get two strings from the user (lines 15 and 17) and use
strstr to see whether the second string exists in the first (line 20).

atoi
atoi enables you to convert a string into a numerical int. It is defined as:
int atoi (const char *string);

Which takes as the only parameter a pointer to the string and returns the con-
verted int.

The following program gets a string from the user and converts it to an int.
/* '13 Main.cpp' */

1
2:
3: /* Input output stream header file */
4: ffinclude <iostream>

194

e e S

10:

12:
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

W 00 ~N o o1

5. Arrays, Pointers, and Strings

/* Start */
main (void)
{
/* Declare a string and an int */
char String [255];
int Number;

/* Get a string from the user */

std::cout << "Enter a string: ";
std::cin >> String;

/* Convert string to integer */
Number = atoi (String);

/* To prove it is an int, calculate square of number */

LT

s

:::r__Ezgj__r_____JﬂL”J——1;L__

std::cout << "Square of Number is " << Number * Number << std::endl;

return 0;
}

Ente
Square of Number is 539725824
Press any key to continue

ame Programming All in One'Source’ Chapter_

a string: 23232

Figure 5.22

atoi.

This program just gets a string from the user and converts it to an int using atoi
(line 18).

Strings 145

atof

atof works like atoi but returns a floating-point number. Its prototype is:
double atof (const char *string);

Where the only parameter is a pointer to the string and it returns a converted double.

atol

Last you have atol, which is the same as atof or atoi but returns a long value. It is
defined as:

long atol (const char *string);

Which takes again a pointer to the string as the only parameter and returns the
converted long.

sprintf

sprintf enables you to create a string using various arguments. This enables you to
format strings to your needs without having to output each element (text or vari-
able), you can use sprintf to create a single string as you want.

sprintf’s prototype is:
int sprintf (char *buffer, const char * format [, arguments] ..);

Where the first parameter is a pointer to the destination buffer. The second para-
meter is a pointer to a string specifying the format. This format string specifies how
the arguments are included in the string. Okay, pick a simple example:

sprintf (String, "%s %d %f", Name, Age, Height);

What happens here is, when sprintf
finds a format specifier (the percent
symbol and a character), it replaces it
with the corresponding parameter. So
in the preceding example, the format
string "%s %d %f" would be replaced
with the Name, Age, and Height variables,
in order.

NOTE

sprintf uses a little trick to achieve
the capability of having a different
number of parameters called vari-

able-argument lists. This is a more
advanced topic that | will not cover
in the book.You can check any of the
Table 5.2 shows some of the most fre- references or MSDN for more infor-
quent format specifiers. mation on them.

146 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

TABLE 5.2 Format Specifiers

Format Specifier Description
c Character
d Signed integer
u Decimal integer
s String
f Floating point

strftime returns an int specifying the number of characters copied to the destina-
tion string.

The following program gets the user information separately and creates a format-
ted string with sprintf to present the information to the user.

/* '14 Main.cpp' */

1

2

3: /* Input output stream header file */
4: finclude <iostream>
5.

6

7

/* Start */
: main (void)

8: {

9: /* Declare a string */
10: char FinalString [2551;
11:
12: /* Declare user's information variables */
13: char Name [255];
14: int Age;

15: float Height;

16: float Weight;

17:

18: /* Get all information from the user */
19: std::cout << "What is your first name :
20: std::cin >> Name;

Strings 147

sy = [—= LI = —1Lr],

21: std::cout << "What is your age : ";

22: std::cin >> Age;

23: std::cout << "What is your height : ";

24: std::cin >> Height;

25: std::cout << "What is your weight : ";

26: std::cin >> Weight;

27 :

28: /* Convert information to a single string */

29: sprintf (FinalString, "Your first name is %s. You are %d years old\
30: and your height %f and weight %f.", Name, Age, Height, Weight);
31:

32: /* Output final string */

33: std::cout << FinalString << std::endl;

34:

35: return 0;

36: }

ame Programming All in One\Source)\Chapter_ | Figure 5.23

Today iz Wednesday, day 82 of January in the year 2082.
It's also 18 hours. 34 minutes and 58 seconds spr\-lntf
Presz any key to continue .

Another boring program. It just gets some user information (lines 19 through 26)
and formats them using sprintf in line 29.

strftime

The last string manipulation I will cover is strftime. Even if this isn’t used much, it
is a nice function to know, especially if you want to output the current time in your
own format. Its prototype is:

size_t strftime (char * strDest, size_t maxsize, const char * format,
const struct tm * timeptr);

148 5. Arrays, Pointers, and Strings

ﬁl_n—"l_”_l_‘L

strftime has a few more parameters than what you are accustomed to, but as usual,
the first parameter is a pointer to the destination string. The next parameter is the
maximum number of characters to include in the destination string. The third
parameter is how you want to format the string. This works similarly to the sprintf
format parameter but has a specific set of format specifiers, as shown in Table 5.3.

The last parameter is a tm structure. The tm structure holds the current system date
and time information and is defined as follows:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;

/*
/*
/*
/*
/*

seconds after the minute - [0,59] */
minutes after the hour - [0,59] */
hours since midnight - [0,23] */

day of the month - [1,31] */

months since January - [0,11] */

Table 5.3 strftime Format Specifiers

Format Specifier

a

I X 3 W o o >

o

Description
Abbreviated weekday
Full weekday

Day of month as number
Abbreviated month name
Full month name

Month as number

Year

Hour in 24-hour format
Hour in 12-hour format
AM/PM indicator
Minutes in number

Seconds in number

Strings 149

sy = [—= LI = —1Lr],

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday - [0,6] */

int tm_yday; /* days since January 1 - [0,365] */
int tm_isdst; /* daylight savings time flag */

s

I believe the code speaks for itself.
strftime returns the number of characters placed in the destination string.

The following program shows the current date and time in a formatted and clean

way:
1: /* '15 Main.cpp' */
2:
3: /* Input output stream header file */
4: {Hinclude <iostream)
5: /* Time header file */
6: #include <time.h>
7:
8: /* Start */
9: main (void)
10: |
11: /* Declare a string and a time structure */

12: char String [2557;
13: time_t Today;
14: tm * Time;

15:

16: /* Get current time */

17: time (&Today);

18: /* Convert time to a structure*/
19: Time = localtime (&Today);

20:

21: /* Convert time to our format */

22: strftime (String, 255, "Today is %A, day %d of %B in the year %Y.\n\
23: It's also %H hours, %M minutes and %S seconds", Time);

24

25: /* Output the time */

26: std::cout << String << std::endl;

27:

28: return 0;

29: }

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Figure 5.24

: Bruno

. strftime.

is your height :

is your weight :

first name iz Bruno. You are 34 years oldand you height 121 ._9800AA and weig]
ht 48.0008008 .
Press any key to continue_

Finally a little change! You declare a few variables, names Today and Time, which are
respectively time_t and tm types (lines 13 and 14). time_t is used by many time-
related functions while the tm type is mostly used to convert from time_t to a more
readable format.

You then get the current time with the function time in line 17. You only need to
pass the address of a time_t variable, in this case, Today. This function stores the
current date and time to Today. Next you need to convert Today to a more readable
format using localtime in line 19. This will return a pointer to tm type variable,
which you will store in Time.

In lines 22 and 23, you format the string to output the time as you want, using
strftime.

Summary

Whoa, complex chapter, no? You have learned about two of the most advanced sub-
jects of C++—arrays and pointers. It is extremely important that you understand
how arrays and pointers work because most of the advanced topics I will cover later
will make use of them.

In this chapter you have also learned how to use strings in C++. Later you will cre-
ate a string class that will make working with strings easy.

Exercises 151

sy = [—= LI = —1Lr],

OQuestions and Answers

Q: Why use arrays to store multiple elements if you can simply use a number after
the variable name to store indexes?

A: Arrays offer you a way to check each element by supplying a number to inside
brackets; this can even be done with a variable. This is good when you want to
check all elements for some value and you can use a for loop. If you did this in
code, there would be a large number of lines just to check each element.

Q: What is the maximum size of an array?

A: This depends on the limits set by the compiler or the system. Some compilers
don’t allow arrays to be bigger than 640KB but allow bigger arrays if they are allo-
cated using new.

Q: Why are pointers so important?

A: Most advanced programming techniques are almost impossible to accomplish
without pointers. When I talk about advanced data structures later, you’ll see how
pointers make things easier.

Q: What is ASCII?

A: ASCII stands for American Standard Code for Information Interchange. It
defines a standard format for text. All characters are represented with a numerical
value; ASCII makes it possible to expect that a specific set of characters will always
have the same numerical value.

Q: Why does the extraction operator only get the first word in a string?

A: The extraction operator stops as soon as it finds either the NULL-terminating
string, \0, or the new line character \n and a space.

Exercises

1. What is an array?
2. What is wrong with the following code:

int Test [123];
int i;
for (i=0, I <= 123; i++)
{
Test [i] = rand () % 100;
}

152 5. Arrays, Pointers, and Strings

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

3. What does the following line of code do:
int Array [1 = { 10, 23, 123, 3433, 43 };

4. What is a pointer?

5. What is the function of new?

6. What is wrong with the following code?

char * Bills;

Bills = new char [10];
[* . %/

delete Bills;

7. To which array element will the following pointer point in the end of the
code:

int BigArray [100];

int * PointerArray;

PointerArray = BigArray;
PointerArray = PointerArray + 5;
PointerArray --;

PointerArray = PointerArray + 3;
PointerArray --;

PointerArray = PointerArray -1;

8. What is the meaning of \0?
9. What will teststring contain in the end of the following code:

char TestString [255];

char Stringl [255] = "Hello you all.";
char String2 [255] = "I'm sad.";

char String3 [255] = "Happy birthday!";
strncat (Stringl, String2, 5);

strncat (String3, Stringl, 1);

strncpy (TestString, String3, 10);
strncat (TestString, Stringl, 10);

CHAPTER 6
CLASSES
Y
La

1549 B. (Classes

These last few chapters have taught you the basics of programming. Even if you
have learned the syntax to C++ functions and variables, the concepts I've cov-
ered are shared among just about every programming language in existence. It is
now time to learn about one of the features that distinguishes C++ from other lan-
guages: classes.

In this chapter you will learn some of these important concepts about C++ classes:

® What a class is

m Different class access

m Constructors and destructors
® Operator overloading

® Unions and enumerations

® Inheritance and polymorphism

Hang on to your seat, because this will be a bumpy ride.

What Is a (Class®

A class is a collection of both data and functions in a single type, which work
together to create a programming representation of objects. See Figure 6.1.

Now I will expand the concepts of classes to a real game object, the typical street

fighter enemy you come across in many games. You need to define two distinctive
parts: what he can do and his attributes. Because this is a relatively simple enemy,
you probably only want to keep the enemy’s vital energy, the type of sprite (image

Figure 6.1

Cowr

Ivoo () A sample class.

Eat ()
Slesp ()

Building Classes 155

sy = [—= LI = —1Lr],

of itself), and his strength. Also, you want him to be able to kick, punch, jump, and
move around.

Because you know what the object is and what it can do, you could create a class to
represent it in code, as you will do in a minute.

New Types

Why create new, structured types, if you can just use some kind of array or naming
scheme to store all your data? The first reason is explicit in the last phrase, it is a
structured way to keep data, all the information relative to an object type in a sin-
gle namespace, which can be accessed easily.

Second, creating new data types enables you to keep your code clear, smaller, more
functional. It also enables you to have specific parts of code isolated from others,
making the code easier to update, and that can be reused over time.

Building (Classes

As with building programs, building classes also come in two phases: design and
implementation. Designing a robust and efficient class is hard work, thus, spending
a few extra minutes, to a couple of days to design a class (depending on the size of
your project, of course) will probably be beneficial in the end.

Design

Designing a class isn’t difficult, but it isn’t easy either. Being able to create a class
that works correctly and efficiently with other classes and other code, while keeping
information hidden is a stressful task, because you need to imagine almost every
possible environment.

The first thing to do when designing something is to think of what it should do.
The objective of the class should be explicit and coherent. The class should have
one purpose, but do it well. If you are battling yourself with naming a class, because
to describe the class you need some name like GamesAndPTayers or BunnyDog, you
would probably benefit from creating two or more different classes so they can be
kept simple and objective.

After you have the class purpose, you should try to identify all the class data mem-
bers, because that enables you to know how the class is described, making it easier
to know how it works.

156 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

The next step, probably the more important one when designing a class, is to know
how the class works with other classes. If you have a class that has no way to com-
municate with other classes or functions, even if the class is more than 10,000 lines
long with enough functions to make NASA cry, it will still be worth nothing, since it
doesn’t work correctly in concrete programs.

The final thing to do is to define the functions, usually called methods. All the
functions should define what the class can do.

To aid in class design, some drawings were created to visually represent class func-
tionality and relation to other classes. Some of the most common symbols are
shown in Figure 6.2.

Definition

After you have your class designed, you need to define it. You do this by typing the
class keyword, followed by the class name and a code block with all the class mem-
bers. When you used code blocks (code between { and }), you usually didn’t need
a semicolon at the end, but when declaring a class, you need to supply the semi-
colon in the end. This allows the compiler to know where the class definition ends.
For your enemy class you saw earlier, an empty class definition would be:

class Enemy
{

[* . %/

s

Figure 6.2
Class design symbols.
Definition Example
CObject
CanMove ()
Specialization (is one) GetType (()) CParentObject
DoSomething ()
Aggregation (is one)

Building Classes 157

sy = [—= LI = —1Lr],

Now, you need to declare the class members. This is done exactly like before, but
instead of declaring the variables and functions in the global scope, you define it
within the class scope (inside the code block). Your enemy class, with the function-
ality you defined earlier, would be something like:

class Enemy

{

public:
int Energy;
int SpriteType;
int Strength;

NOTE
void Kick (void); Don’t worry about that public:
void Punch (void); in the code, which will be fully

void Jump (void); = explained in a little while.
void Move (int Direction);

Figure 6.3
Address of data Data How a class is
0344| |float Power, . .
0348 |long Age; organized in memory.
0452 |char Type,
0433) | ahnrt Arnmo;
0455) |short Speed;

Implementation

The final step when developing a class is obviously the actual class methods imple-
mentation. This isn’t very different from before except that you need to specify the
scope of the function. Remember when you used std::cout? The :: resolved the
scope, meaning that cout is a part of std. So, to specify that you are implementing
the Enemy methods, you need to implement the function adding the class name and
the scope resolution operator before the class name like:

void Enemy::Punch (void)
{

/* Punch code */

}

Which would tell the compiler that you are defining Punch in Enemy’s scope.

158 6.

_Ijl—q_rl—lEl'”—”"—l_.—

Using Classes

Classes

L

ﬁl_n—"l_”_l_‘L

Using a class isn’t much different from using a normal function or variable. You
use the class’s object, followed by either member of or pointer to member of opera-
tors, and then the according function or variable. For example:

Enemy BadGuy

Enemy * PointerBadGuy;

PointerBadGuy

= &BadGuy;

BadGuy.Kick ();
PointerBadGuy->Energy = 100;

Using a class is as easy as that.

Private, Protected,
and Public Members

Classes have different access modes for their members: private, protected, and pub-
lic. Each of these modes has advantages and disadvantages, but used wisely, they

will make your class very robust.

Any method inside the class can use all the other class members, but sometimes
you don’t want functions outside the class to be able to modify the class data. You

will use access modes to protect the data.

Garne Code

ConLIB

Keyhoard

¥

Screen

Figure 6.4

Class protection levels.

Private, Protected, and Public Members 159

sy = [—= LI = —1Lr],

private

By default, all class members are private. Private members can only be accessed
inside the class. Inside the class functions, you can use any member that is defined
as private, but outside the class scope, you can’t. When you define the class access
to private, all the following members declared after you stated the private keyword
are also private until a new access method is found.

public
Public class access is exactly that, public. All class members are ready to be used,
inside the class or not.

By allowing all members to be public, you can access all the information within it
from anywhere, but this has a disadvantage, if you are working with other people,
or planning to distribute your code, leaving all methods public provides a way for
people to break your class by supplying invalid data to class members.

Here’s an example where leaving the data members public is bad:

class SomeClass
{

public:

int NumberlLives;
}

[* . */
SomeClass Game;
Game.NumberLives = -59;

As you can see, by leaving the member public, you enable anyone to change the
data without verifying it, and I think it’s pretty bad to have -59 lives, don’t you?

protected

The protected access level is tricky. It works exactly like the private access level but
members who have protected level can be accessed by a derived class, while private
members can’t.

The following example illustrates this point (if you change protected to private, it
will result in the same error since they both protect outside access to the class):

160 B. C(Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

class SomeClass
{
protected:
int Score
pubTic:
int NumberLives;
}
[* . %/
SomeClass Game;
Game.Score = 0; /* Error */

Game.NumberLives = 5; NOTE
Although you can change the NumberLives You will see what a derived class
member since it is public, the compiler will is later in the chapter, so don’t

give you an error when you try to use the worry about it right now.
Score member, because it is protected.

What Kind of Access Is Right?

So, what kind of access should you use? All of them—a class can have all of the
three access levels for different members.

Public members should be mostly functions to allow control over the class. Of
course you can make your data public, but this goes against the object-oriented
programming (OOP) practice, as you will se in Chapter 9, “Basic Software
Architecture.”

Private members should be used mostly for data that isn’t shared with derived
classes and that the user shouldn’t mess with alone. Private functions should proba-
bly be functions that are specific to the class and that should only be called from
within the class itself.

Protected members should be mostly data that shouldn’t be available to the end
user, but should be available for derived classes. This includes mostly data-like
attributes.

As with your enemy class earlier, a good way to separate the access levels would be
to make all the data protected (because you might want to derive the class to create
different enemies) and the functions public:

class Enemy
{
protected:

Constructors and the Destructor 161

int Energy;
int SpriteType;
int Strength;

pubTic:

void Kick (void);

void Punch (void);

void Jump (void);

void Move (int Direction);
s

Making the class with this access level enables you to control the enemy while not
caring how the enemy is stored. Of course, a few more methods would be needed
to make the preceding class totally functional, but that’s a different story.

When designing a class, pay special attention to the access level members have. Try
to imagine all the circumstances under which your class can be used, and see which
members benefit from each access level.

Constructors and
the Destructor

Do you remember that when a variable was created, it was either initialized to 0, if
it was in the global namespace, or not initialized at all if it was inside some function
scope? Well, class members aren’t initialized, but sometimes you wish they were.
When a class is declared, a special function inside the class is called, named con-
structor. When a class is deleted, a special function is also called, named destructor.

Default Constructor

When the class is declared, and if you don’t explicitly call a constructor, the default
constructor will be called. This function is usually responsible for initializing the
class members, but can be used for just about everything.

You declare a default constructor by creating a function with no return type, with
the name of the class, and no arguments. If you don’t do this, the compiler will
create a blank constructor for you, but it is always better for you to create the con-
structor yourself. The compiler should always create a blank constructor, but just in
case, better to be safe than sorry.

162 B. Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Your Enemy class with a constructor with arguments would be something like:

class Enemy
{
protected:
[* . %/
public:
Enemy (void);
[* . *]
s

General Constructors

A good thing about constructors is that they can have parameters similarly as nor-
mal functions. This way you can initialize a class with the values you want when you
declare it.

Creating constructors that accept parameters is like creating normal functions,
except that you don’t supply a return type and the name must match the class
name, such as:

class Enemy

{

protected:
[* . %/

pubTic:
Enemy (int OtherEnergy, int OtherSpriteType, int OtherStrength);
[* . */

}s

You would then implement this constructor to initialize each class member to the
given arguments.

Copy Constructor and References

The copy constructor is like a normal constructor but has gained this name
because it is used to copy all the data from one class to another. Copy constructors
have only one parameter, which is a reference to a class of the same type.

If you remember from Chapter 3, “Functions and Program Flow,” when you pass a
variable to a function, the function will have a copy of that same variable. Passing a
variable by reference, the function will have the exact object, not a copy. Briefly,

Constructors and the Destructor 163

sy = [—= LI = —1Lr],

when you pass a class by reference, you pass the exact same class to the function,
and the function can modify the class, sort of like passing a pointer that you can
modify.

To pass a class as reference, you need to include the reference operator & between
the type and the variable name.

Your Enemy class with a copy constructor would be the following:

class Enemy
{
protected:
[* . %/
public:
Enemy (Enemy & OtherEnemy);
[* . */
s
[* . %/
Enemy::Enemy (Enemy & OtherEnemy)
{
/* Copy all the members of OtherEnemy to this class */
}

Now you could safely create one class and set it up, and use that class to create new
classes like:

Enemy EnemyOne;

/* Set EnemyOne properties and other */

Enemy EnemyTwo (EnemyOne); /* Use copy constructor */
Enemy EnemyThree (EnemyOne); /* Use copy constructor */

And you would create two more enemies that were exactly like EnemyOne (thus the
name copy constructor).

Destructor

If a function is called when a class is created, it is only fair that a function is called
when the class is destroyed, right? For that, you have the destructor. There can be
only one destructor per class (kind of like the Highlander), and it must be declared
the same way as the default constructor but with a ~ symbol before the name.

The compiler also takes care of creating this function if you don’t, but as before, it
is better that you create it so that you know exactly what is happening.

164 B6. (Classes

With all the constructors and the destructor, your Enemy class would now look like:

class Enemy

{

protected:
int Energy;
int SpriteType;
int Strength;
int * Name;

pubTic:
Enemy (void);
Enemy (int OtherEnergy, int OtherSpriteType, int OtherStrength);
Enemy (Enemy & OtherEnemy);
~Enemy (void); void Kick (void);
void Punch (void);
void Jump (void);
void Move (int Direction);
}s
[* . *]
Enemy::Enemy (void)
{
Name = new char [100];
}
Enemy::~Enemy (void)
{
if (Name != NULL)
{
delete [] Name;
}
}

Creating a destructor like this would ensure that any memory allocated by the class
would be deallocated when the destructor is called, which is when the class object
is destroyed.

Operator Overloading

I have already talked about operators for the simple types you have been working
with, now it is time to learn how to create and use operators with your own classes.

Operator Overloading 165

sy = [—= LI = —1Lr],

Creating operators for your classes is called operator overloading and works similarly
to creating class methods, with a few limitations, of course.

The first difference when creating operators from normal functions is that you no
longer specify a function name but use the operator keyword followed by the opera-
tor itself. For example, if you wanted to create a postfix-increment operator, you
would declare the operator inside the class like:

operator ++ (void);

Or if you wanted to implement a multiplication operator that accepts an int and
returns an int, you would do:

int operator * (int OtherNumber);

There is a caveat when using operator
overloading, the declaration syntax has TIP
to follow the operator’s syntax. For exam-

ple, the array element operator ([1) with a capital C like CSomeClass

must take only one parameter of type and prefix class member data with
int, while the postfix-increment operator m_ like m_Data.

(++) doesn’t have any parameters.

It is common to prefix a class name

1 1

Here is a simple example of an addition
operator for a vector class:

class Vector
{
public:

int x, y;

/* Constructor / destructor / Other methods */
Vector operator + (Vector & OtherVector);
Vector & operator += (Vector & OtherVector);

}
[* . */
Vector Vector::operator + (Vector & OtherVector)
{
Vector TempVector;
TempVector.x = x + OtherVector.x;
TempVector.y =y + OtherVector.y;
return TempVector;
}
Vector & Vector::operator += (Vector & OtherVector)

166 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

{

x += 0therVector.x;

y += OtherVector.y;

return * this;

}

VAN ¥
Vector VectorOne;
Vector VectorTwo;
Vector VectorThree;

/* Do something with vectors */
VectorOne = VectorTwo + VectorThree;
VectorThree += VectorOne;

This class would have an addition operator that returns another vector as can be
seen in the operator body, and an assignment addition operator that uses the first
vector to store the final vector. When you use assignment type operators you usually
return a this value.

The this pointer is a class member that is only accessible inside a class function
that always points to the class you are using; in this case, it would be pointing to the
class you were using to store the final result. In the code, it would be VectorThree.

Putting It All Together —
The String Class

You will develop a small string class that aids in the use of general classes to demon-
strate all the concepts covered up until now.

You need to first include the normal header files, iostream and string.h, and then
declare your string.

/* '01 Main.cpp' */

1
2
3: /* Input output stream header */
4: #include <iostream>

5: /* String manipulation header */
6: #include <string.h>

7 .

8

9

/* Qur class */
: class CString
10: {

Putting It All Together—The String Class 167

I Y

-——|_|—-—|_.—"”_”‘|5l—l—|_p—'—|_'_

11: private:

12: char m_aString [10247;
13: public:

14: /* Constructors */

15: CString (void);

16: CString (CString & rString);
17: CString (char * pString);

18: /* Destructor */
19: ~CString (void);
20:

21: /* Operators */

22: CString & operator = (CString & rString);
23: C(CString & operator = (char * pString);
24: bool operator == (CString & rString);

25: bool operator == (char * pString);

26: bool operator != (CString & rString);

27: bool operator != (char * pString);

28:
29: /* 0ther functions */

30: char * GetString (void);

31: int GetlLength (void);
32: };

You first declare your class: CString. The first thing you have to do is declare an
array of characters to hold the actual string, which is done in line 12. After that you
declare all the constructors: default, copy, and the normal one, and the destructor.

Next you declare the operators. You declare two types of uses in each operator,
using a CString by reference and a pointer to a string. This enables you to use the

operators like:

CString Text;
Text = "Hello";

Which is very helpful when you hardcode some strings. In the end, you declare two
functions to return a pointer to the actual string that is sometimes needed by some

functions and the string’s length.

Next you have the constructors:

34: /* Constructors */
35: CString::CString (void)
36: |

37: m_aString [0] = '"\0';

168 B. Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

38: }

39:

40: CString::CString (CString & rString)
41: |

42: if (rString.GetLength () > 0)
43: |

44 strcpy (m_aString, rString.GetString ());
45: 1}

46: else

47: |

48: m_aString [0] = "\0"';

49: |}

50: }

51:

52: CString::CString (char * pString)
53: {

54: if (pString)

55: |

56: strcpy (m_aString, pString);
57: }

58: else

59: |

60: m_aString [0] = '"\0";

61: }

62: }

The default constructor does nothing more than make the first element of the
string the NULL-terminating character, which enables you to later check whether
the string is used or not. The second constructor takes a pointer to a string (C
style), and if the length of the string is greater than 0, it copies the string to the
current one. The last constructor, the copy constructor, copies the string to

the current one.

The next destructor does nothing more than set the first element of the string to
the NULL-terminating character.

64: /* Destructor */

65: CString::~CString (void)
66: {

67: m_aString [0] = "\0"';
68: }

Putting It All Together—The String Class 169

sy = [—= LI = —1Lr],

The next two operators, the assignment operators, copy a string to the current one;
they work very similarly to the constructors:

70: /* QOperators */
71: CString & CString::operator = (CString & rString)

72: {

73: if (rString.GetlLength () > 0)
74: |

75: strcpy (m_aString, rString.GetString ());
76: }

77: else

78: |

79: m_aString [0] = '"\0"';

80: }

81:

82: return *this;

83: }

84:

85: CString & CString::operator = (char * pString)
86: {

87: if (pString)

88: {

89: strcpy (m_aString, pString);
90: }

91: else

92: {

93: m_aString [0] = '\0";

94: }

95:

96: return *this;

97: }

The next four operators are to test whether the string is equal to or different from
another. Remember, strcemp returns 0 if the strings are equal:

99: bool CString::operator == (CString & rString)

100: {

101: if (strcmp (rString.GetString (), m_aString) != 0)
102: |

103: return false;

104: '}

170 B. Classes

M'_'Eru—[rl_‘—'—l_l—'l_'n

105: else

106:

107: return true;

108: }

109: }

110:

111: bool CString::operator == (char * pString)
112: {

113: if (strcmp (pString, m_aString) != 0)
114. |

115: return false;

116: '}

117: else

118: |

119: return true;

120: }

121: }

122:

123: bool CString::operator != (CString & rString)
124: {

125: if (strcmp (rString.GetString (), m_aString) == 0)
126: {

127: return false;

128: '}

129: else

130:

131: return true;

132: }

133: }

134:

135: bool CString::operator != (char * pString)
136: {

137: if (strcmp (pString, m_aString) == 0)
138: {

139: return false;

140: '}

141: else

142: |

143: return true;

144 }

145: }

Putting It All Together—The String Class 171

sy = [—= LI = —1Lr],

The next two functions return a pointer to the actual string and the string’s length:

147: /* 0ther functions */

148: char * CString::GetString (void)
149: {

150: return m_aString;

151: }

152:

153: int CString::GetlLength (void)
154: {

155: return strlen (m_aString);

156: }

The following program uses the class you created to make it easier to work with strings:

158: /* Start */

159: int main ()

160: {

161: /* Use constructor */

162: CString Test ("This is just a test!");
163: CString Welcome;

164:

165: /* Use assignment operator */
166: Welcome = "Welcome to the world!";
167:

168: /* Use strings */

169: std::cout << Welcome.GetString () << std::endl;

170: std::cout << Test.GetString () << std::endl;

171: std::cout << "Welcome length: " << Welcome.GetlLength () << std::endl;

172:

173: /* Use comparison operator */

174: if (Welcome != Test)

175: |

176: std::cout << "'Welcome' is different than 'Test'." << std::endl;
177: '}

178: else

179: |

180: std::cout << "'Welcome' is equal to 'Test'." << std::endl;
181: }

182:

183: return 0;
184: }

172 B. C(Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

.ame Programming All in One'Source\Chapter_Df Class®, Flgure 6.5

ome to the world!

Thiz is just a test? H
Melcome length: 21 Stnng CIGSS.

‘Welcome' is different than ‘Test’.
Presz any key to continue

In line 162 you create a string using a constructor to specify the string value, in this
case—“This is just a test!”. In line 166 you use the assignment operator to cre-
ate a string as if it were just like any other class. In lines 169, 170, and 171 you use
both GetString and GetLength methods with the std::cout stream to output the
string’s text and string’s length, respectively, to the user. Lastly, in line 176 you use
the different than operator to see whether both the strings are equal.

What you did here was to create a full-featured string class that allows strings to be
created using various constructors (supplying an already existing string class or by
supplying a real string), and you also implemented some operators to make it eas-
ier to work with strings. Now you can use strings just like any other variables, copy-
ing each other with the assignment operators.

Basics of Inheritance
and Polymorphism

Now that you have the basic knowledge of classes, let’s dig into two of the advanced
features of C++: inheritance and polymorphism.

Inheritance

The best way to explain what inheritance is is with an example. Suppose you are cre-
ating some kind of animal game where you have mammals, birds, fishes, and so on.
In each type of animal you have various species like dogs, cats, cows, for mammals,

Basics of Inheritance and Polymorphism 173

sy = [—= LI = —1Lr],

and eagles and vultures for birds. Then inside each species you would have sub-
species or specializations like a Sheppard dog, a Saint Bernard, and so on.

The first thing the marketing guy would tell the programmer would be: “Hey, we
need one hundred animals in this game; you better start making some animal
classes” (that is, if the marketing guy is smart enough to know what a class is).
Creating one hundred classes to describe each animal wouldn’t only be tiring, but
a pain to work with.

The programmer would probably do it another way, using inheritance.

By using inheritance the programmer can create a base class for a mammal, with all
the necessary data and functions, and then derive from that class to create mam-
mal species. By deriving from a base class, the derived class will have all the data
and functions that are defined by having either a public or a protected access level
in the base class, automatically declared and defined in the derived class.

Take a look at Figure 6.6 to see how a cat and a cow class would end if they were
derived from a mammal class.

Deriving from a (Class

Deriving a class from another class isn’t difficult. After you have defined the class
name and before the start of the code block, you include a colon followed by the

Figure 6.6

Both a cat and a cow

Candidates for parent mammal class
share the same data

CCat CCow because they are
mammals, but they

Move () Move ()
CanMove () CanMove () have extra methods
Color () Color ()
Eat () Eat () because they are of
Sleep () Sleep () different species.
Meow () SayMoo ()
WashSelf () GiveMilk ()

174 b6. (Classes 2 K
_‘J_I_q_rl_nEru—”'I—._,— L T — = I ﬁl_'_,_ﬁ_u_,_L

type of level access and the base (parent) class name. If you want to derive from
multiple classes (multi-inheritance) you precede each extra parent class with a
comma:

class Derived : public BaseA, protected BaseB
{

/* . */
}s NOTE
Defining a class like this would create a If you don’t supply any access level
class, Derived, which has all the ele- when deriving from a class, the

default access level is public.

ments defined in BaseA and in BaseB.

Virtual Methods

When you derive from a parent class, you can only add methods to that class. If you
try to overwrite already defined functions, you get errors. This is where virtual
methods come into play. If you define a class function as virtual, a derived class can
implement its own version of that method, but if you don’t, the derived class will
not be able to override some functions. See Figure 6.7.

Making a class function a virtual function is pretty easy. You only need to insert the
virtual keyword before the return type of the function like:

virtual Return_Type FunctionName (Parameters_List);

I chose the animal example to show these concepts. The following example will use
a base animal class from where a dog and a cat class are derived. Using virtual

Figure 6.7
_ Hhaile Virtual methods and
ETIVE o
Classes &gf:%f;ﬁ;?;poo the class virtual table.
Cow &Cow: Walk ()

[vptr]
Base class
Cat

[vptr]
&Cat:Eat ()
T &CatSleep ()

&Cat:Walk ()

Basics of Inheritance and Polymorphism 175

sy = [—= LI = —1Lr],

methods, you will be able to call different implementations of a class method

(Talk).
1 /* '02 Main.cpp' */
2
3: /* Input output stream header */
4: #include <iostream>
5:
6 /* Base animal class */
7: class CAnimal
8: {
9: public:

10: int m_MaxAge;

11: int m_Age;

12:

13: CAnimal ();

14: virtual ~CAnimal ();

15:

16: virtual void Talk (void);
17: };

Your animal class isn’t complicated, you just defined a maximum age, an age, the
constructor, the destructor, and a virtual method Talk. This is the method you will
override. Following are the constructors which init the class members to 0:

19: CAnimal::CAnimal ()

20: {

21: m_MaxAge = 0;

22: m_Age = 0;

23: }

24

25: CAnimal::~CAnimal ()
26: {

27: }

28:

29: void CAnimal::Talk (void)
30: |

31: std::cout << "Base animal doesn't talk!";
32: }

176 B. Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Next you have your dog class derived from CAnimal. You don’t need to declare the
class data because it was already done in CAnimal, so you simply need to take care of
the constructors and the functions you want, in this case, just Talk.

34: /* Derived dog class */
35: class CDog : public CAnimal

36: {

37: public:

38: CDog ();

39: virtual ~CDog ();

40:

41: wvirtual void Talk (void);
42: };

Next are the CDog constructor and destructor. The constructor initializes the maxi-
mum age member, m_MaxAge, to 9, which is a typical life for a dog, and the destruc-
tor does nothing.

44: CDog::CDog ()

45: |

46: m_MaxAge = 9;
47: m_Age =0;
48: }

49:

50: CDog::~CDog ()
51: {

52: }

You finally get to your virtual method. You implement a virtual method like any
normal class method; in this case, it will just check whether the dog is still alive,
and if so, bark and add a year to his life.

54: void CDog::Talk (void)

55: {
56: if (m_Age < m_MaxAge)
57: |

58: std::cout << "Bark..." << std::endl;
59: m_Age ++;

60: }

61: }

Basics of Inheritance and Polymorphism 177

sy = [—= LI = —1Lr],

The same logic as for the CDog class is used in the CCat class, except that the normal
life for a cat is around five years and instead of barking, the cat meows.

63: /* Derived cat class */
64: class CCat : public CAnimal
65: {

66: public:

67: CCat ();

68: virtual ~CCat ();

69:

70: virtual void Talk (void);
71: };

72:

73: CCat::CCat ()

74: {

75: m_MaxAge = b5;

76: m_Age = 0;

77: }

78:

79: CCat::~CCat ()

80: {

81: }

82:

83: void CCat::Talk (void)

84: {

85: if (m_Age < m_MaxAge)

86: {

87: std::cout << "Meow..." << std::endl;
88: m_Age ++;

89: }

90: }

The main program creates a cat and a dog and calls each Talk method 10 times.
This will show that the cat meows five times while the dog barks nine.

92: /* Start */
93: int main ()
94: {

95: (Dog Dog;

178 B. C(Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

96: CCat Cat;

97: int Loop;

98:

99: for (Loop = 0; Loop < 10; Loop ++)
100: |

101: Dog.Talk ();
102: Cat.Talk ();

103: }

104:

105: return 0;
106: }

\Game Programming All in One'Source’),Chapter nal Fars Flgure 6.8

Animal farm.

Prezz any key to continue

Inheritance is pretty useful when you deal with large projects where many objects
share the same proprieties and functions as others or when some kind of pluggable
interface is required. Inheritance’s advantages are even more useful when used
with some kind of polymorphism, as you will see next.

Polymorphism
Polymorphism is a feature supported by C++, which in its most basic sense, allows
you to change class types.

By allowing various classes to derive from a single one, you can morph any of the
derived classes to the base one, thus allowing you to store various class types in a
class base that is shared by all the derived classes.

Basics of Inheritance and Polymorphism 179

sy = [—= LI = —1Lr],

If you use the previous animals example, you know that both the CDog and CCat
classes derived from CAnimal. If you wanted to store both the animals in pointers,
you would need to create at least two different pointers, which isn’t very bad, but
suppose you are simulating an entire zoo?! It would have hundreds of animal
classes, and storing all of them in each type pointers would be harsh.

Polymorphism solves this problem. Because each animal will derive from CAnimal,
each animal-derived class can be cast (we will see this next) to the base type CAnimal
and stored in a CAnimal pointer. After this is done, you can call each of the animals’
derived methods (the ones you get from deriving from CAnimal) or you can cast the
animals to their own type and use their specific method. Cool, isn’t it?

Check out Figure 6.9 which shows a sample class hierarchy and I will discuss how
you can use polymorphism to change class types.

If you have a class of type CWindow, but you need a way to convert it to a CControl or
CObject, which may be required for several reasons like making store lists of objects
and/or passing different types of classes to the same function.

Casting enables you to travel the hierarchy tree and convert each derived class to a
type of parent class.

Figure 6.9

CObiject A sample window

class hierarchy.

Y
CControl

Y
CWindow

180 B. Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Casting

One of the fundamentals of polymorphism is casting. Casting is how C++ converts
types from one to another whether they be classes or simple data types.

There are four kinds of casts: static_cast, dynamic_cast, const_cast, and reinter-
pret_cast. I will only cover the first two, but feel free to check MSDN or other C++
books for more information on the latter two.

static cast

The static_cast expression enables you to convert a type to a type id based exclu-
sively on the expression and no verification is performed to ensure the validity of
the conversion.

Its syntax is as follows:
static_cast <type-id> expression
For example:

int Number = 74;

char Letter;

float Energy = 54.4;

Letter = static_cast <char> Number;
Number = static_cast <int> Energy;

This enables you to convert from type to type. The end result would be Letter hold-
ing the character ‘0’ (ASCII value for 74), Number holding 54, and Energy 54.4.

This works the same for classes:

01: class Base

02: {

03: /* .. */

04: };

05: class Derived : public Base
06: {

07: /* . */

08: };

09: /* . */

10: Base * BaseClass;

11: Derived * DerivedClass;
12: /% . */

Basics of Inheritance and Polymorphism 181

13: BaseClass = static_cast <Base *> (DerivedClass);
14: DerivedClass = static_cast <Derived *> (BaseClass);

This piece of code first does an upcast from Derived to Base (line 13). Itis called an
upcast because it moves up within the class hierarchy. Next, you do a downcast in
line 14 by converting a Base type class to a Derived type. See Figure 6.10. By the way,
this was your first example of polymorphism!

dynamic_cast

dynamic_cast works similarly to static_cast but does a type check to prevent unsafe
casts.

Its syntax is as follows:
dynamic_cast <type-id> expression

By ensuring type checking, unsafe casts will result in a null pointer, which can be
detected and handled gracefully. If there is no checking, an unsafe cast could lead
to an access violation error that isn’t very nice.

If you tried the static_cast class example using dynamic_cast, it would not work
since the downcast from Base to Derived would not be possible.

Figure 6.10
Casting objects up
- and down.
CObject
¥ Upcast
CControl

Downcast

i J
ChWVirdom

182 B. C(Classes , &

Enumerations

An enumeration is a simple topic that resembles sets of constants. Enumerations
enable you to define a set of constants relative to a topic in a single structured way.
You use it like:

enum EnumName

{

ConstantName = Value,
/* . %/

s

By creating an enumeration type, you can specify a set of constants that can be
used through the program. A simple example would be the difficulty of a game. By
creating an enumeration with the different game difficulties, you can use the con-
stants through the game instead of magic numbers:

enum GameDifficulty
{

Easy =1,

Medium,

Hard,

Nightmare

}s

One of the advantages of enumerations is
the fact that the next constant will have a NOTE
value equal to the previous constant plus
one. In your example, Medium would be
two, Hard would be three, and Nightmare
would be four. If you don’t supply any
value, the first constant will have the value

Magic numbers are numbers that
are usually found in programs and
games that are used to tweak the

program but have no accurate

! real value, just look good, or are
0. You can also specify the values to all or used to define stuff that an out-

just a few of the constants if you want. sider wouldn’t understand.

Take note that all constants except the last
one need a comma at the end.

An example of this would be to use enumerations in a game to define game diffi-
culty:

enum GameDifficultyConstants
{

Tcm;fz-F[,J,a@

Unions 183

I Y

Easy = 0;
Intermediate = 1;
Hard = 2;

AreYouNuts = 3;

};

/* . */

switch (GameDifficulty)
{

case Easy: /* 0 */

Lives = 5;
break;
case Intermediate: /* 1 */
Lives = 3;
break;
case Hard: /* 2 */
Lives = 2;
break;
case AreYouNuts: /* 3 */
Lives = 1;
break;

}

=::r——L__r——ﬂ——L4——J1r_“1__EEEEEE““I———T_L_JI—J_L_F

This way, you wouldn’t have to use real numbers, but constants to specify game
stuff. While it doesn’t bring any advantages code-wise, it helps code readability.
Try to use numbers instead of constants like this for your game, rest for a week,
and then come back to programming. I assure you that you won’t remember what
the values mean. This way, you will always know!

Unions

Unions are funny! Really they are. A union is a way to create one variable (more
like a structure) that can hold different types (floats, ints). Think of a box that
can hold only one object at a time, but that object can be a doll, a toy car, or an
apple. The box, of course, is as big as the biggest object it holds. The box can be

thought of as being a union.

A union is created in the same way as a class. It starts with the keyword union, fol-
lowed by the union name, and then the block with all the elements. For example:

union PixelType
{

184 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

unsigned char EightBit;
unsigned short SixteenBit;
unsigned long ThirtyTwoBit;
s

This union is made of three elements that can be used exclusively (only one of
them contains a valid value) depending on the type of pixel type you want to use.
This union would be as big as the biggest element, in this case, an unsigned Tong.

PixelType could be used as follows:

[* . %/
PixelType Color;
If (ScreenType == 8)

{
Color. EightBit = OtherColor8;
}
if (ScreenType == 16)
{

Color. SixteenBit = OtherColorl6;

}

if (ScreenType == 32)

{

Color. ThirtyTwoBit = OtherColor32;
}

Figure 6.11

Memory alignment

D:‘:D\ Utdon for unions.
short Life;
char Type,

D Allocated, nonused memory
D Allocated, used memory

Static Members 185

Static Members

Static class member is a C++ feature that may come in handy when you need global
access to the class. Static members enable you to create a generic singleton class,
which will let you create classes that exist only once in your program. A useful tech-
nique that you will be using extensively for the screen manager, sound manager,
enemy manager, and other classes (mostly managers) later.

I have already talked about global scope functions and variables, it’s time to talk
about static functions and variables.

A static member (be it either a variable or function) is a member that can be
accessed without the use of a real instance of the class. Also, static variables are
shared between every instance of that class type. This means that a class type with a
static variable will hold the same value for every instance of the class. So, if you cre-
ate ten classes and change the value of a static variable of one of them, it will also
change the value of the static variable in the others.

Static members are created using the static keyword before the return type (for
functions), or the variable type (for variables), in the class definition, like so:

class StaticExample
{

public:

static int m_NumberOfClasses;

static void PrintNumberOfClasses (void);
1

int StaticExample::m_NumberOfClasses; NOTE

You can utilize class static members by Static data members must also be
using the class type followed by the declared in the global namespace
scope resolution operator (::) and the
static member name, like so:

using the class namespace before
the static member variable as shown
in the previous examples with int
StaticExample::m_NumberOfClasses ++; StaticExample::m_NumberOfClasses;.
StaticExample::PrintNumberOfClasses ();

- ’7

186 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Useful Techniques
Using Classes

Knowing how to use classes is an important aspect when using C++. Classes enable
you to have a more structured way to work and manage your data, but there are
some other special uses for classes that have been used more recently to aid in the
implementation of software, these are singletons and object factories.

A Singleton (Class

A singleton is an object that has only one valid instance at any time. This means you
can have only one singleton class at one time while running a program. If you try
to create another instance of a singleton, the program will generate an error if it is
in debug mode.

Singleton classes are useful for classes like enemies or a sound manager. They pro-
vide access to a class all over your programs using static members.

Singletons are based on static pointers to classes. By keeping a static pointer of the
current instance of the object, and by having a static class function to return that
pointer, you can at any time know whether there is an active instance of the object,
and if so, use it.

A basic singleton example is the following:
/* '03 Main.cpp' */
/* Input output stream header */
: #include <iostream>

1
2
3
4
5: /* Assertion header */
6: #include <assert.h>

7

8

/* Singleton class */
9: class CSingletonExample

10: {

11: private:

12: static CSingletonExample * m_Singleton;
13:

14: public:

15:

Useful Techniques Using Classes 187

sy = [—= LI = —1Lr],

16: CSingletonExample ();

17: virtual ~CSingletonExample ();

18:

19: static CSingletonExample * GetSingleton (void);
20: };

21:

22: CSingletonExample * CSingletonExample::m_Singleton;

The first thing you probably noticed that hasn’t been done before is the inclusion
of assert.h. This header file is included so you can use the assert function to pro-
duce a debug-only error as you will see later.

Next, you have the class definition with the normal constructor and destructor.
The two things to note are the static pointer to a CSingletonExample class (same type
as the class itself) and the static function GetSingleton that also returns a pointer to
a CSingletonExample class. These two class members are used to create the actual
class singleton.

Don’t forget to include the static pointer declaration in the global namespace.

25: CSingletonExample::CSingletonExample ()

26: {

27: assert (!m_Singleton);
28:

29: m_Singleton = this;
30: }

Your constructor isn’t very complicated, but first, a word about assert. The assert
function is used to create a breakpoint in debug mode when its argument is false
(0). This is a handy function when you aren’t sure of some behavior of your pro-
gram. Or when you want to make sure everything is 100 percent right and that
some code should never be executed, you use assertions. Assertions have the advan-
tages of generating a breakpoint that leads the debugger to the line where assert
has been called, making it easier to diagnose and fix the problem.

Knowing how assert works, let’s see what it does for you. When you use the syntax
Im_Singleton, you are determining whether m_Singleton isn’t valid, because if it is, it
will return false (remember, !true is false). Since m_Singleton is a static member, it
will have the same value for any instance of the class that exists. If you are creating
a second instance of the class, then m_Singleton is a valid class, thus, !m_Singleton
returns false and assertion exists.

188 B. Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

After this check is done to ensure that there isn’t any valid instance of the class,
you initialize m_Singleton by pointing it to the class you are declaring by using the
this pointer.

32: CSingletonExample::~CSingletonExample ()

33: {

34: assert (m_Singleton);
35:

36: m_Singleton = NULL;
37: }

Next you have the destructor, which does the exact opposite of the constructor. It
checks to see whether m_Singleton is valid (if it is being destroyed, then there has to
be one valid instance of the class) and resets the m_Singleton member to NULL to
enable you to create another instance of the class later.

39: CSingletonExample * CSingletonExample::GetSingleton ()

40: |

41: assert (m_Singleton);
42

43: return m_Singleton;
44 }

Finally, you have the static class function that returns a pointer to the valid single-
ton. You first check whether the m_Singleton member is valid, and if so, you return
it. This allows you to access the only instance of the class.

Now, using the singleton class is easy, you just declare one instance of the class, and
whenever you want to use it, you call the static member GetSingleton:

int main ()

{

CSingletonExample Singleton;
CSingletonExample *PointerSingleton;

PointerSingleton = CSingletonExample::GetSingleton ();

return 0;
}

This sample program would create one instance of CSingletonExample in the first
line, and then a pointer to a CSingletonExample (a pointer that isn’t initialized isn’t
a valid instance of a class). You would then use the static function GetSingleton to

Useful Techniques Using Classes 189

sy = [—= LI = —1Lr],

make PointerSingleton point to the actual singleton class, which you could then use
as you wish.

The following is an example of bad use of the singleton class:

int main ()

{

CSingletonExample Singleton;
CSingletonExample *PointerSingleton;

PointerSingleton = CSingletonExample::GetSingleton ();
CSingletonExample SecondSingleton;
return 0;

}

With the preceding code, you would get an error message and if you were in debug
mode, the program would launch the debugger when you declare the second
instance of CSingletonExample. This would happen because there is an instance of a
CSingletonExample already.

Figure 6.12

ertion failed: *m_Singleton. file f:“game programming all in nne\source\chaptu
er_B6%A4 bad singleton~B4 main.cpp. line 27 . Bad singleton

Microsoft Yisual C++ Debug Library I

Debug Error!

Program: ...SourcelChapter 06104 Bad Singleton\Debugh04 Bad Singleton.exe

abnormal programm kermination

(Press Retry to debug the application)

Retry Ignore

Singletons are used mostly for managers of some kind; for example, if you have a
class that will manage all the enemies, this class would be better done with a single-
ton assigned to it, which would avoid passing classes to various functions, and you
would still have access to it. If you think about it, there are many other uses like
memory managers, image managers, and so on.

190 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

An Object Factory

You may be wondering what the heck an object factory is. . . . Well, I'm going to
start by saying it is an extremely useful tool for games. It enables you to create
classes in runtime with little info on them. You can, for example, load a file from
the hard drive and create the necessary classes in runtime depending on the file.
This is extremely useful when loading levels or generating enemies.

An object factory is based mostly on polymorphism, so make sure you have under-
stood that part well before advancing.

An object factory’s workings aren’t very complicated (well, at least the ones I will
cover in this book, since there are many different and more complicated object fac-
tories out there). They are based on a function or static class that returns a pointer
to a certain class, depending on the type of parameters you supply. By creating a
base class and deriving all the possible classes that you want to use with the object
factory from that class, you are able to create just one function that returns various
class pointers that are returned as a base class pointer which can later be cast.

Figure 6.13

A factory in action.

Materials N Facto il Objects produced
(type) " ¥ il (classes)

You will be using the same classes from the polymorphism program:

/* '06 Main.cpp' */

1

2

3: /* Input output stream header */
4: finclude <iostream>

5 /* Assertion header */

6: #include <assert.h>

7 .

Useful Techniques Using Classes 191

8: /* Object types */

9: enum ObjectTypes

10: {

11: DogType,

12: CatType

13: };

14

15: class CAnimal

16: {

17: public:

18: int m_MaxAge;

19: int m_Age;

20:

21: CAnimal ();

22: virtual ~CAnimal ();
23:

24: virtual void Talk (void);
25: };

26:

27: CAnimal::CAnimal ()

28: {

29: m_MaxAge = 0;

30: m_Age = 0;

31: }

32:

33: CAnimal::~CAnimal ()

34: |

35: }

36:

37: void CAnimal::Talk (void)
38: {

39: std::cout << "Base animal doesn't talk!";
40: }

41:

42: /* Derived dog class */
43: class CDog : public CAnimal
44 {

45: public:

46: CDog ();

47: virtual ~CDog ();

48:

192 B. Classes

_J_I_"l_r'—'Eru_”_'_‘—'—l_l—'

49: virtual void Talk (void);
50: };

51:

52: CDog::CDog ()

53: {

54: m_MaxAge = 9;

55: m_Age = 0;

56: }

57:

58: CDog::~CDog ()

59: {

60: }

61:

62: void CDog::Talk (void)
63: {

64: if (m_Age < m_MaxAge)
65:

66: std::cout << "Bark..." << std::endl;
67: m_Age ++;

68: }

69: }

70:

71: /* Derived cat class */
72: class CCat : public CAnimal
73: {

74: pubTic:

75: CCat ();

76: virtual ~CCat ();

77:

78: virtual void Talk (void);
79: };

80:

81: CCat::CCat ()

82: {

83: m_MaxAge = b;

84: m_Age = 0;

85: }

86:

87: CCat::~CCat ()

88: {

89: }

Useful Techniques Using Classes 193

sy = [—= LI = —1Lr],

90:

91: void CCat::Talk (void)
92: {

93: if (m_Age < m_MaxAge)
94: |

95: std::cout << "Meow..." << std::endl;
96: m_Age ++;
97: }
98: }
99:
100: /* Object factory class */
101: class CObjectFactory

102: {

103: public:

104: static CAnimal * GetType (int Type);
105: };

The first thing to note is that you declare an enumeration in line 9 containing the
type of objects that the factory can return, nothing new. You then declare the
already covered polymorphic classes and your object factory class. I decided to
keep the object factory a class even if it has only one member to allow it to be
upgraded as required, making code changes minimal. GetType returns a pointer to
the CAnimal class, but take note that the actual pointer is usually a pointer to a class
that derived from CAnimal that is cast to CAnimal.

107: CAnimal * CObjectFactory::GetType (int Type)

108: {
109: switch (Type)
110: {

111: case DogType:

112: return new CDog ();
113: break;

114: case CatType:

115: return new CCat ();
116: break;

117:

118: default:

119: assert (0);

120: }

121: return NULL;

122: }

194 B. C(Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

This function is the real meat of the object factory. It uses a switch clause to check
which type of class you want to create, and according to the Type argument, it
returns a pointer to a new class of the asked type. If a class outside the available
range is specified, it generates an error with assert and returns NULL.

124: /* Start */
125: int main ()
126: {

127:

128: CAnimal * Dog;
129: CAnimal * Cat;

130:
131: Dog = CObjectFactory::GetType (DogType);
132: Cat = CObjectFactory::GetType (CatType);
133:

134: Dog->Talk ();
135: Cat->Talk ();
136:

137: delete Dog;
138: delete Cat;
139:

140: return 0;
141: }

\Game Programming All in One’Source\Chapter Factor Figure 6. | 4

Pl‘e:‘;;-;ny key to continue ObjeCt faCtory-

Duestions and Answers 195

sy = [—= LI = —1Lr],

The program to use the object factory isn’t complicated either. You first create two
CAnimal types (base classes), and then use the object factory to create two animals,
first a dog and then a cat. Since CObjectFactory::GetType returns an already cast
type, you can use a CAnimal class with it. If you
preferred to declare Dog and Cat as CDog and
CCat, you would need to cast the return NOTE
pointer from CObjectFactory::GetType to their
types (which would be safer). You then call
Dog’s and Cat’s Talk method to ensure the
exact objects were created.

A good use for a singleton class
is an object factory; try it.

Don’t forget to delete the pointers when you don’t need them.

Summary

In this chapter you have been introduced to one of the features that distinguish it
from other programming languages: classes.

In G++, classes are one of the basics of object-oriented programming, making it
easy and accessible to represent concepts as objects, or more accurately, classes.

Also, two of the most advanced features of C++, inheritance and polymorphism,
were briefly covered so that you can use them in your game.

In the end, you were presented with two design patterns that were built upon the
knowledge learned in this chapter and may prove useful later.

Ouestions and Answers

Q: Why are classes so important in object-oriented programming?

A: In C++, the simplest way to describe an object is by a collection of data and
methods. By allowing the data and methods to be connected to some structured
type is very beneficial. These structured types, the classes in C++, can be thought of
as the representation of the object.

Q: Why use inheritance if you can just retype the code?

A: Even if inheritance isn’t necessary (even though it is helpful, especially when
you deal with polymorphism), it has the advantage of code reuse, which is what you
are looking for.

196 B. (Classes

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Exercises
1. Whatis a class?
2. What are the three different access levels a class member can have?
3. What is the difference between protected and private access levels?
4. What is wrong with the following code?

class SomeObject
{

private:

int iData;

[* o */

}

5. What is inheritance?
6. What is wrong with the following code?

Class Base
{
int Data;
}s
Class Derived : public Base
{
int MoreData;
}
/% . */
Derived NewClass;
NewClass.Data = 0;
NewClass.MoreData = 0;

7. What is polymorphism?
8. Describe two possible uses for unions.

9. Provide two possible uses for a singleton class.

o e g - e e e e
—IJLl“r___J_ll_' :_r '=‘,_\—‘_' l_l—’_m_Lﬂ..m' _ |—| ’_\J—L_%_'J—U_

CHAPTER 7

DEVELOPING
IYIONSTER

—’_U—l/_m'_—w o

198 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

know the last few chapters were a little boring for you, so now I have to present

you with something to make up for them. How about a fullfeatured game? In
this chapter, I will focus only on developing a small library to create text-based
games and a complete game called Monster. This entire chapter will be based on
the knowledge covered earlier, so you shouldn’t have a problem with it.

ConlLib

Unfortunately, one of C++’s biggest caveats is its lack of support for advanced text
output. Unless you use an external library of functions that are compiler specific,
you don’t have much control over the way you can output your text.

Fortunately, Microsoft has a set of console
functions that enable you to do some
! NOTE

advanced text output.
))) A console is what you have
To make it easier to work with consoles, you been using until now. It’s the

will develop a small console library named text-only window where you
ConLib, which will be able to clear the back- have been working.

ground to a specific color, output text to any
place in the console, and also have a better
input method.

Figure 7.1

Conlib at work.

ConlLib 199

sy = [—= LI = —1Lr],

Design

ConlLib is a small library to handle console input and output. Its objective is to be
simple to use yet allowing you to have the control you need to develop a text game.
The base features are:

® Specifying both background and text color

Ability to clear the entire console

Outputting text at any position

Reading text from the keyboard

Handling keystrokes from the keyboard

It may seem pretty small but ConLib can handle just about anything needed to
develop a text game.

ConlLib is made up of a single class named ConlLib. Imaginative, no? From this class
you can access any of the methods you need to handle the screen or keyboard. The
header including the class definition is as follows:

/* 'ConLib.h" */

1
2
3 /* Avoid redefinition */

4: Jfpragma once

5:

6 /* Windows standard header file */
7: ffinclude <windows.h>

8

9: /* ConlLib color codes */
10: enum ConColor

11: |

12: ConRed =1,
13: ConGreen = 2,
14: ConBlue =4
15: };

16:

17: /* ConLib control class */

18: class ConlLib

19: {

20: /* Screen and keyboard handles */
21: HANDLE m_Screen;

200 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

22: HANDLE m_Keyboard;

23:

24 /* Color attributes */
25: WORD m_TextColor;

26: WORD m_BackgroundColor;

27:

28: public:

29:

30: /* Constructor / destructor */

31: ConLib ();

32: ~ConLib ();

33:

34: /* Set attributes */

35: void SetBackgroundColor (WORD Color);
36: void SetTextColor (WORD Color);

37: void SetTitle (char * Title);

38: void SetPosition (COORD Position);
39:

40: /* Qutput methods */

41: void Clear (void);

42: void OutputString (char * String);
43;

44 /* Input methods */

45: void Read (char * Buffer, DWORD BufferSize);
46: int GetKey (void);

47: };

You see a few new things here, but before I discuss that, check out Table 7.1 for a
description of each of the important methods.

Now that you know what each method does, it’s time to check all the new stuff.
And as you may notice, the first is in the windows.h header file in line 7. As said
before, C++ doesn’t have a good set of functions for text output, so you need to use
Microsoft’s own code to do it. This code is included in the windows.h header file.
This will all be explained when you deal with Windows programming but for now,
just remember that windows.h contains all the Windows functions you need to oper-
ate with the console.

The next things to check are lines 21 and 22, namely:

HANDLE m_Screen;
HANDLE m_Keyboard;

ConlLib 201

sy = [—= LI = —1Lr],

TABLE 7.1 ConlLib Methods

Method Description

SetBackgroundCoTor Sets the color of the background when text is typed
or the screen is cleared

SetTextColor Sets the color of the text

SetTitle Sets the window console title

SetPosition Sets the cursor position from where text will be written
Clear Clears the entire console

OutputString Outputs a string to the current cursor position

Read Reads a string from the keyboard

GetKey Returns if a key is pressed and if so, which key it was

A Windows handle is a way to communicate with something. In this case, you are
going to communicate with the screen, which is the output, and the keyboard,
which is the input. There are many types of handles that you will look at later.
Handles are a major part of Windows programming, but they aren’t a big deal to
work with. They basically offer a way to communicate with an object. It’s like a wire
connecting the computer to your keyboard—you have the keyboard, which is the
object, and you have the computer, which is sort of like the functions you will use.
The wire is the handle that allows the communication between them.

A handle is a variable that identifies an object or an operating system
resource. Handles come in all forms and sizes, from hardware handles
to image and sound handles. A handle is the way you communicate
with operating system resources, and since operating system resources
can be moved to other places in memory, it’s always advisable to get
the handle after releasing it since there is no assurance that a previ-
ously retrieved handle will be stored in the same place forever.

202 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

These two members will be initialized in the constructor, as you will see later.
Keeping them as class members allows you to use them at various times during your
games without having to get the handle to the device each time.

You will also keep the current background and text color inside the class. Even if
this isn’t a necessity, it will make programming easier.

Implementation

By now, you probably have a good understanding of what ConLib is and how it
works so it is time to start programming it. First, include the ConLib.h header file so
that you have the class definition in the source file. Next, code your constructor
and destructor as follows:

/* 'ConLib.cpp' */

1
2
3 /* ConLib complement header file */

4: ffinclude "ConLib.h"

5:

6 /* Get standard screen and keyboard handles */
7: ConLib::ConLib ()

8: {

9: m_Screen = GetStdHandle (STD_OUTPUT_HANDLE);
10: m_Keyboard = GetStdHandle (STD_INPUT_HANDLE);
11:

12: SetTextColor (ConRed | ConGreen | ConBlue);
13: SetBackgroundColor (0);

14:)

Your constructor does two separate things. First it gets a handle to the standard
input device, usually the keyboard, and a handle to the standard output device, usu-
ally the monitor. It does this using the function GetStdHandle, which is defined as:

HANDLE GetStdHandle (DWORD nStdHandle);

This function takes only one parameter that specifies the device for which to return
the handler; the available devices are shown in Table 7.2.

And returns a handle to the specified device. If the function fails, this GetStdHandle
returns INVALID_HANDLE_VALUE.

The last thing the constructor does is set the background color to black and the
text color to white.

ConlLib 203

sy = [—= LI = —1Lr],

TaABLE 7.2 GetStdHandle Devices

Device Description
STD_INPUT_HANDLE Standard input device
STD_OUTPUT_HANDLE Standard output device
STD_ERROR_HANDLE Standard error device

Now, how does the color combination work? As shown with ConlLib.h, you created
an enumerator ConColor with three constants, each one with a value that for each
constant is a multiple of two. If you are wondering why you did this, take a look at
the numbers that follow:

070 = 0 = 00000000
2"0 =1 = 00000001
2”1 = 2 = 00000010
2”2 = 4 = 00000100
2”3 = 8 = (00001000

As you can see, each multiple of two has a bit set. Depending on the number, the
corresponding bit is set. So how can this help you? In the constructor, you used the
bitwise-inclusive-OR (|) operator to set the color. The bitwise-inclusive-OR takes
two numbers and compares each bit of the two. If either bit is set (1), the resulting
number will also have the bit set, for example:

11010001 |
01001011

11011011

If a bit of either number is set, the resulting number will have that bit set. So in
your color case, the combination ConRed | ConGreen | ConBlue would generate the
number 00000111, which will let you know later what colors are passed to the func-
tion. If you, for example, wanted the color purple, you had to mix red and blue
like ConRed | ConBlue, which would generate 00000101. If you pass zero as the color,

204 7. Developing Monster
ﬂj_q—l_l_'Eru_”j_‘_'— LI =

the number will be 00000000 which
means that none of the color bits is set, NOTE
meaning, lack of any color: black.

If you need to brush up on your
The following method, binary to decimal base systems
SetBackgroundColor, uses the argument knowledge, try Appendix C, “Binary,

Color to set the specified console back- Hexadecimal, and Decimal

ground color: Notation.”

15:
16: /* Does nothing */
17: ConLib::~ConLib ()

18: {
19:
20: }
21:

22: /* Sets background color */
23: void ConLib::SetBackgroundColor (WORD Color)

24: {

25: m_BackgroundColor = 0;

26:

27: /* Use bit manipulation to get the color combinations */
28: if (Color & ConRed)

29: {

30: m_BackgroundColor |= BACKGROUND_RED;

31: 1}

32: if (Color & ConGreen)

33: |

34: m_BackgroundColor |= BACKGROUND_GREEN;

35: 1}

36: if (Color & ConBlue)

37: |

38: m_BackgroundColor |= BACKGROUND_BLUE;

39: |}

40:

41: /* Set the color using combinations from above */

42: SetConsoleTextAttribute (m_Screen, m_TextColor | m_BackgroundColor);
43: }

ConlLib 205

l——|_|—'—|_.—'"|_|_”15I—I—|_|"—|—|_‘_

I Y

The first thing to do is set the background color
to black (0). This enables you to perform bit
manipulation without worrying about previous
colors. To better understand why you use all the
ifs and bit stuff, let’s take a look at
SetConsoleTextAttribute first, which is defined as: — —

NOTE

A WORD is the same as an
unsigned short in Windows.

BOOL SetConsoleTextAttribute (HANDLE hConsoleOutput, WORD wAttributes);

Where hConsoleOutput is a handle to the console output, and if you remember cor-
rectly, in your case m_Screen. The second parameter is what matters; the combina-
tion of colors passed to it will be used to set the console colors. The only way to
pass a color combination to it is like before, using the bitwise-inclusive-OR operator

with a combination of flags that specify what colors you want to use. These flags are
described in Table 7.3.

By specifying a combination of the flags in Table 7.3, you can create various color
combinations like:

FOREGROUND_RED | FOREGROUND_BLUE | BACKGROUND_GREEN

Would make the text have a purple color (red and blue) on a green background.
SetConsoleTextAttribute returns zero in case of error, and any other value if
successful.

TABLE 7.3 SetConsoleTextAttribute Devices

Device Description
FOREGROUND_RED Red text
FOREGROUND_GREEN Green text
FOREGROUND_BLUE Blue text

BACKGROUND_RED
BACKGROUND_GREEN
BACKGROUND_BLUE

Red background
Green background

Blue background

206 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

So, how do you convert from your ConLib color flags to SetConsoleTextAttribute
background flags? Again, you use bit manipulation, this time using the bitwise-AND
(&) operator. The operator compares all the bits in two numbers, and if both bits are
set (1), the returning bit will also be set. If any other combination is used (both bits
not set or one is set and the other is not set), the end bit will be 0. For example:

11010001 &
01001011

01000001

So, if you were using flags to set the colors, for example, the purple color (00000101),
and if you wanted to know which bits were set, you would have to compare each bit
with a bitwise logical AND. Confusing? It’s pretty simple actually. For example:

00000101 & /* Color */
00000100 /* ConRed */

00000100

Would return the number four (00000100 in binary) since the only bit that is true
in both operands is the 4 bit. Moreover, in C++ any nonzero value is true, thus if
you did:

if (Color & ConRed)
{

/* Do something */
}

Would evaluate to true since the end result would be four. If you wanted to check
whether the green flag was set, you would replace ConRed with ConGreen, like so:

00000101 & /* Color */
00000010 /* ConGreen */

00000010
Which would return zero, thus, evaluating any if expression to false.

Let’s do a quick recap: using numbers that are powers of two, you in essence have
numbers which only have a single bit set, creating a mutually exclusive collection of
bit flags. If you want to set any bit of a number, you use the | operator with the cor-
rect bit flag (which is a power of two), and if you want to check whether a certain
bit of a number is set, you use the & operator with the correct power of two, which
would return true if the bit was set and false if it wasn’t.

ConlLib 207

sy = [—= LI = —1Lr],

Back to your code, you check Color for what bits are set using ConLib flags, and
depending on the ones that are, you set them in m_BackGround using the BACKGROUND_
Windows flags.

Now that you have your background color combination, you need to use it with
SetConsoleTextAttribute. You also need to OR the current text color because
SetConsoleTextAttribute is used for both the text and background color. To
combine both the background color and the text color, you use the OR operator,
like so:

m_TextColor | m_BackgroundColor

And you finally have your SetBackgroundColor done. Flag manipulation is pretty
handy in game programming and it is widely used in Windows programming to set
windows attributes and other flags.

The next function, SetTextColor, works exactly like SetBackgroundColor, but instead
of doing the bit manipulation and setting the BACKGROUND_ flags, it sets the FORE-
GROUND_ flags, like so:

46: /* Sets text color */
47: void ConLib::SetTextColor (WORD Color)

48: {

49: m_TextColor = 0;

50:

51: /* Use bit manipulation to get the color combinations */
52: if (Color & ConRed)

53: |

54: m_TextColor |= FOREGROUND_RED;

55: 1}

56: if (Color & ConGreen)

57: |

58: m_TextColor |= FOREGROUND_GREEN;

59: }

60: if (Color & ConBlue)

6l: |

62: m_TextColor |= FOREGROUND_BLUE;

63: }

64:

65: /* Set the color using combinations from above */

66: SetConsoleTextAttribute (m_Screen, m_TextColor | m_BackgroundColor);
67: }

208 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

The next method, SetTitle changes the title of the current console window:

69: /* Sets window title */
70: void ConLib::SetTitle (char * Title)

71: |
72: SetConsoleTitle (Title);
73: }

This function is only a container for SetConsoleTitle. SetConsoleTitle is used to set
the window name, the top bar text, of the current console window, that is, the win-
dow you are using. It is defined as:

BOOL SetConsoleTitle (LPCTSTR 1pConsoleTitle);

The only parameter of the function is the new console title. If the function isn’t
successful, it returns zero; if it is successful, it returns any nonzero value.

Now you have the Clear function. This function clears the screen using the current
background color.

75: /* Clears the screen */
76: void ConLib::Clear (void)
77: {

78: COORD Start;

79: DWORD Written;

80:

81: Start.X = 0;

82: Start.Y = 0;

83:

84: FillConsoleOutputAttribute (m_Screen, m_TextColor | m_BackgroundColor,
85: 80*25, Start, &Written);

86: FillConsoleQutputCharacter (m_Screen, ' '

87: 80*25, Start, &Written);

88: SetConsoleCursorPosition (m_Screen, Start);

89: }

The first thing you do is declare two variables, one of type CO0RD and one of type
DWORD. DWORD is simply a type definition and is the same as an unsigned long in
Windows. CO0RD, on the other hand, is a structure that holds two variables, X and Y,
which define a 2D coordinate on the screen.

typedef struct _COORD {
SHORT X;
SHORT Y;
} COORD;

ConlLib 209

sy = [—= LI = —1Lr],

There isn’t much to explain here. X holds the horizontal coordinate and Y holds
the vertical coordinate. Easy!

Because you want to clear the console from the beginning, you set both X and Y of
Start to zero. After this is done, there are two things to do: set the attributes like
color and the fill the console with a space character to actually clear the console.
This is done with Fil1ConsoleQutputAttribute and Fil1ConsoleQutputCharacter.

Fil1ConsoleOutputAttribute is used to fill the attributes of all the specified positions
of the console, or as MSDN calls them, character cells. Its prototype is:

BOOL FillConsoleOutputAttribute (
HANDLE hConsoleOutput,
WORD wAttribute,
DWORD nLength,
COORD dwWriteCoord,
LPDWORD TpNumberOfAttrsWritten
)

There are a few parameters, but nothing too difficult. The first parameter is the han-
dle to the console you want to fill; in your case m_Screen. Next you have the attribute,
which is filled with the background and text color information, m_TextColor |
m_BackgroundColor like before. Then you have a new parameter, this is the number of
character cells to write, and you use 80*25 since it is the common size of a console
window—80 characters wide and 25 characters tall. After that is the starting coordi-
nate, which you already set to the beginning of the console earlier—Start. Finally, a
pointer to a DWORD to where the number of character cells will be stored, here
&Written. This is more of a formality and has almost no value to you. See Figure 7.2.

Figure 7.2

we o T T T I Screen anatomy.

Height

AR EEEY pbe S RSNy Pl SR D

210 7. Developing Monster : »
==L e e | s

Fil1ConsoleQutputAttribute returns a
BOOL like before, which returns zero if TIP
the function was not successful and a
nonzero value if it was successful.

From now on, every function that
returns a BOOL where no description
Now that you have the attributes of the of the return value is given can be
character cells, you need to fill them considered a standard return type
with something. You can fill them with that means zero for uriyyccenyful

any character, but to make the back- and nonzero for successfill

ground all of the same color you use a 1 1

space instead of a letter; that way, the cells

will only have the background color. This is done with Fil1ConsoleQutputCharacter,
which writes a character to the console with the current attributes. Its prototype is
as follows:

BOOL FiTl1ConsoleQutputCharacter (
HANDLE hConsoleQutput,
TCHAR cCharacter,
DWORD nlength,
COORD dwWriteCoord,
LPDWORD TpNumberOfCharsWritten
)3

Whlch work similarly t.o ‘ NOTE
Fi11ConsoleOutputAttribute with the
only changes being that instead of pass-
ing an attribute, you pass a char, in your
case space ‘ ’, and instead of storing the
number of attributes written, it stores
the number of characters written.

When you enclose a single character
inside the single quotes ‘’, you tell

the compiler to convert that charac-
ter to its ASCII code, a char. For
example ‘A’ would convert to 64.

),
The last thing you do is set the cursor

position to the beginning of the console. This prevents the console from being
scrolled in some Windows versions. You just need to pass a COORD type as a parame-

ter to SetPosition that specifies the position to move to.
And talking about SetPosition, let’s check it out:

91: /* Sets the cursor position */
92: void ConlLib::SetPosition (COORD Position)
93: |

ConlLib 211

sy = [—= LI = —1Lr],

94: SetConsoleCursorPosition (m_Screen, Position);
95: }

SetPosition is just a wrapper method for the real function, SetConsoleCursorPosition
that is defined as:

BOOL SetConsoleCursorPosition (
HANDLE hConsoleQutput,
COORD dwCursorPosition

)s

Where the first parameter is a handle to the console where you want to set the cur-
sor position and the last parameter is the position of the cursor.

Next there is the OutputString method. This method enables you to output a string
to the current cursor position:

97: /* Sends a string to the screen */
98: void ConLib::0QutputString (char * String)

99: {

100: DWORD Written;

101:

102: WriteConsole (m_Screen, String, strlen (String), &Written, NULL);
103: }

Another wrapper method, this time for WriteConsole that is defined as:

BOOL WriteConsole (
HANDLE hConsoleQutput,
CONST VOID *1pBuffer,
DWORD nNumberOfCharsToWrite,
LPDWORD TpNumberOfCharsWritten,
LPVOID TpReserved

);

WriteConsole takes, as usual, a handle to the console you want to use with the func-
tion as the first parameter. Next, there is a pointer to a buffer, the actual string to
output—in your case, the string passed to OutputString, String. Then there is the
number of characters to write, and you will use the length of String as parameter.
Next you have a pointer to the number of characters written, where you pass the
address of Written, as before, you don’t use this but you pass it to ensure it works
properly. Windows reserves the last parameter so you just need to pass NULL to it.

212 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

If you can output to the console, it’s only fair that you can also read from it. You
use Read to do this:

105: /* Reads a string from the keyboard */
106: void ConLib::Read (char * Buffer, DWORD BufferSize)

107: {

108: DWORD Read;

109:

110: ReadConsole (m_Keyboard, Buffer, BufferSize, &Read, NULL);
111: }

Read works similarly to OutputString, it is a wrapper for ReadConsole, which also
works similarly to WriteConsole, which is defined as:

BOOL ReadConsole (
HANDLE hConsoleQutput,
CONST VOID *1pBuffer,
DWORD nNumberOfCharsToRead,
LPDWORD 1pNumberOfCharsRead,
LPVOID TpReserved

);

These function parameters work exactly like the ones for WriteConsole, with the dif-
ference that the second parameter is used to store the input and not the string to
output.

The last method of ConLib, GetKey enables you to know whether a certain key is
pressed down. If it is, it will return the key virtual key code, or if no key is pressed,
it returns zero.

114: /* Gets a key from the keyboard */

115: int ConLib::GetKey (void)

116: {

117: DWORD Read;

118: INPUT_RECORD Event;

119:

120: /* Get console input */

121: ReadConsolelnput (m_Keyboard, &Event, 1, &Read);

122:
123: /* If dinput event is a key event see if there is any key pressed
124 and return its virtual-key code */

125: if (Event.EventType == KEY_EVENT)
126: |

ConlLib 213

sy = [—= LI = —1Lr],

127: if (Event.Event.KeyEvent.bKeyDown)

128: {

129: return Event.Event.KeyEvent.wVirtualKeyCode;
130: }

131: 1}

132:

133: return 0;

134: }

There are two important parts of this function: getting the input event from the
console and checking whether it is a key down event. You get the input using
ReadConsolelnput:

BOOL ReadConsolelnput (
HANDLE hConsolelnput,
PINPUT_RECORD 1pBuffer,
DWORD nLength,
LPDWORD TpNumberOfEventsRead
)

The first parameter, as always, is the handle to the console you are working with.
Next you have a pointer to a PINPUT_RECORD structure that will hold the event. This is
a standard input record structure to console applications and is defined as follows:

typedef struct INPUT_RECORD {
WORD EventType;
union {
KEY_EVENT_RECORD KeyEvent;
MOUSE_EVENT_RECORD MouseEvent;
WINDOW_BUFFER_SIZE_RECORD WindowBufferSizeEvent;
MENU_EVENT_RECORD MenuEvent;
FOCUS_EVENT_RECORD FocusEvent;
} Event;
} INPUT_RECORD;

The first member of the structure, EventType, tells you what kind of event origi-
nated. Table 7.4 shows the possible event macros.

How does this work? Well, the value of EventType tells you the event type, and
depending on the type, the union will contain a structure corresponding to the
event. So if EventType is KEY_EVENT, then the Event structure would contain a
KEY_EVENT_RECORD, and since you are only interested in keyboard events, you will
only be checking for KEY_EVENT. If this is the event, then you need to check

214 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

TABLE 7.4 INPUT_RECORD Event Type Macros

Macro Description

KEY_EVENT Event member contains a KEY_EVENT_RECORD structure.
MOUSE_EVENT Event member contains a MOUSE_EVENT_RECORD structure.
WINDOW_BUFFER_ Event member contains a WINDOW_BUFFER_SIZE
SIZE_EVENT _RECORD structure.

MENU_EVENT Event member contains a MENU_EVENT_RECORD structure.
FOCUS_EVENT Event member contains a FOCUS_EVENT_RECORD structure.

what happened using the Event member as a KEY_EVENT_RECORD, which is defined
as follows:

typedef struct KEY_EVENT_RECORD {
BOOL bKeyDown;
WORD wRepeatCount;
WORD wVirtualKeyCode;
WORD wVirtualScanCode;
union {
WCHAR UnicodeChar;
CHAR AsciiChar;
} uChar;
DWORD dwControlKeyState;
} KEY_EVENT_RECORD;

There is a lot of information in this structure, but you’ll only be using two: bKeyDown,
which if set to true, means that a key is down, and wVirtualKeyCode which holds the
virtual key-code of the key pressed.

If bKeyDown is true, you then return

wVirtualKeyCode in ReadKey, but if bKeyDown is NOTE
false, meaning that no key is pressed, then A virtual key-code is an identifier
you return zero to let the calling function that specifies a certain key in a

_ device-independent manner.

know there isn’t any key pressed.

Building Monster 215

sy = [—= LI = —1Lr],

Even if it isn’t the most complete console library, it offers enough functionality to
create almost any text game, and to prove this, you will use ConLib to develop the
game Monster next.

Also, Windows offers a few more functions to handle console applications that
I encourage you to check out on MSDN.

Building Monster

You probably have heard of the game Monster, but for those who haven’t, Monster
is a puzzle game that was pretty popular a long time ago. The game was usually
completed using only basic text routines.

In the following pages, you will develop your own version of Monster with various
difficulty levels, lives, and some color.

Objective
The objective of Monster is simple: destroy all the monsters in the arena while not

getting yourself killed.

The game can end three different ways. The first, and the desired way, is by destroy-
ing all the monsters. The second way is by losing all the lives, and lastly by the user

giving up.

Rules

Monster is a simple game with few rules, which are described as follows:

® The game starts with the monsters and the player randomly placed in the
arena. An extra effort is expended to ensure the player isn’t placed in a cell
(x-y coordinate inside the arena) already used by a monster.

® The player can move in any of eight possible directions (North, North-East,
East, South-East, South, South-West, West, North-West).

= Each monster can move in any of the eight possible directions but always
makes the move that makes it near the player.

® The player can leap to a random place in the arena. There is no assurance
the player will not land in a cell with a monster, thus losing a life.

® Neither the player nor the monsters can move outside the arena.

® When two monsters share the same cell, both monsters are killed.

216 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

= When a monster and the player share the same cell, the monster is killed
and the player loses a life.

= When all monsters are dead, the game ends with the player winning.

= When the player loses all the lives, the game ends with the player losing.

Design

There are two parts of the game that can be separated: the game itself and the
menus and information screens.

Game Description

The game starts with the normal splash screen showing information about the
game. After the player presses a key, the main menu appears where the player can
choose to either start the game in one of the three difficulties, as shown in Table
7.5, or exit the game.

When the user starts the game, he is taken to the main game area, which shows the
arena and the game information in gray/white, the player in green, and the mon-
sters in red.

Thinking in Classes

You will be using two main classes to develop Monster: Cqame and CPlayer. CGame will
hold all the information about the game such as the monsters, the arena size, and
one instance of the player. CP1ayer will hold the player position, the number of lives
and leaps left, and the player’s score.

TABLE 7.5 Difficulty Settings

Difficulty Description
Easy Monsters = 10,Arena size = 25%|5, Lives = 4, Leaps = 3
Medium Monsters = 20, Arena size = 358, Lives = 3, Leaps = 2

Hard Monsters = 30,Arena size = 50*23, Lives = 2, Leaps = |

Building Monster 217

Both the arena and the monsters could be classes of their own.

This would make it easier if you planned to add custom arenas
with special items or different designs or create various types of
monsters. I’ve decided not to make them classes since for this
version of the game they are unnecessary because the arena is
always a rectangular field, making it only necessary to hold the
size, and the monsters are described only by a position.

| S

The CPlayer class is defined as:

10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

/* '02 Player.h' */

/* Windows standard header file */

1
2
3
4: finclude <windows.h>
5:
6
7
8
9

/* Time header file */

. #Hinclude <time.h>

/* Player class */

: class CPlayer

{

private:

/* Player attributes */
COORD m_Position;
short m_Lives;

int m_Score;
int m_Leaps;
public:

/* Constructor / destructor */
CPlayer ();
~CPlayer ();

/* Move player */
void Move (COORD Direction);

218 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

27: void RandomLeap (COORD ArenaSize);

28:

29: /* Maintenance methods */

30: void GetPosition (COORD * Position);
31:

32: void Setlives (short Lives);
33: short GetLives (void);

34:

35: void SetScore (int Score);
36: int GetScore (void);

37:

38: void SetlLeaps (int Leaps);
39: int Getleaps (void);

40: };

As stated before, CP1ayer holds the position, the score, the number of available
leaps, and the score of the player. Most of the methods are simple and don’t need
explanation. They are used to set or get the member you want. The only two
methods that actually are of importance are Move and RandomLeap. Move, obviously,
moves the player by a certain coordinate and RandomLeap makes the player move to
a random place inside the arena. I will discuss the implementation of these meth-
ods in a bit.

The next class, CGame, is the heart of your game. It contains all the information such
as the monsters’ positions, the arena size, the player, the last key pressed, and so
on. The file ‘02 Game.h’ also contains some enumerated types that you use to
make your code more readable. Both the types and the class are defined, as follows:

/* '02 Game.h' */

1
2
3 /* Windows standard header file */

4: #include <windows.h>

5: /* Standard input/output header file */
6: #include <stdio.h>

7

8

. /* ConLib header file */
9: ffinclude "ConLib.h"

10: /* CPlayer header file */
11: #include "02 Player.h"

12:

13: /* Game status enumerator */
14: enum GameStatus

Building Monster 219

sy = [—= LI = —1Lr],

15: {

16: GameMainMenu =1,
17: GameRunning =2,
18: GamePaused =3,
19: GameWon =4,
20: GamelostLife =5,
21: Gamelost =6,
22: GameExit =7,
23: GameSplashScreen = 8
24},

25:

26: /* Game difficulty enumerator */
27: enum GameDifficulty

28: |

29: GameEasy =1,
30: GameMedium =2,
31: GameDifficult =3,
32: };

33:

34:. /* Game base class */
35: class CGame

36: {
37: private:
38:

39: /* Input/output information */
40: ConLib * m_Console;

41: int m_LastAction;
42

43: /* Game information */
44: int m_GameStatus;
45: COORD m_Arena;

46: (CPlayer m_Player;
47. COORD * m_Monsters;

48: int m_MonstersNumber;

49:

50: public:

51:

52: /* Constructors / destructor */
53: CGame ();

54: CGame (ConLib * Console);
55: ~CGame ();

220 7. Developing Monster

_J_I_"l_r'—'Eru_”_'_‘—'—l_l—'

LT
56:
57: /* Shows the relative information depending on game status */
58: void ShowSplash (void);
59: void ShowMenu (void);
60: void ShowGame (void);
61: void ShowWon (void);
62: void ShowlLostLife (void);
63: void ShowLost (void);
64: void ShowExit (void);
65: void Show (void);
66:
67: /* Process the turn depending on game status */

68: void ProcessSplash (void);
69: void ProcessMenu (void);

70: void ProcessGame (void);

71: void ProcessWon (void);

72: void ProcessLostLife (void);
73: void ProcessLost (void);

74: void ProcessExit (void);

75: void ProcessTurn (void);

76:

77: /* Set console information */

78: void SetConsole (ConLib * Console);
79:

80: /* Game methods */

81: void StartNewGame (int Difficulty);
82: void EndGame (void);

83: void CheckCollisions ();

84: int GetAction (void);

85: int GetStatus (void);

86: void MoveMonsters (void);

87: };

E::T__Ezgj__r_____JﬂL”J——1;L__

Okay, let’s go over a quick examination of the code. First include the header files
as normal. Then create two enumerated types, GameStatus and GameDifficulty. You
create these types to make code more readable later.

You then have your CGame class that has several members. m_Console is a pointer to
your ConLib library and m_LastAction is the last key pressed. You keep it to let you
know whether there was any action, as you will see later. You then have the

m_GameStatus which holds the game status, the arena size, m_Arena which is defined

Building Monster 221

J—Llrrﬂ—_.ﬁ [—= LI = —1Lr],

as a COORD to make it easier to work with, an instance of the player, and m_Player
which is the type of the class you defined earlier. Last, you have the monster’s
pointer to a COORD, m_Monsters, and the monster’s number, m_MonstersNumber.

You store the monsters as a COORD because each monster is defined as a coordinate
with values between one and m_Arena - 1. When a monster has a coordinate equal
to zero, it means that it is dead, thus saving a bit of memory.

You then have your constructors and destructor—nothing new. The next set of
methods, ShowXXXX, just shows the screen according to the method. For example,
ShowMenu shows the menu screen. The Show method is responsible for calling the
correct function depending on the game status.

The next set of methods works exactly the same, but the methods are used to
process (do the logic of) the current game status. They are named ProcessXXXX, and
the function responsible for calling the correct method is Process.

The next method, SetConsole, enables you to
set the console you are using. This function

exists in case you want to change the console NOTE

later. I’'ve chosen to have various
methods for Show and Process

StartNewGame and EndGame are responsible for to make it easier to separate

setting up a game and destroying it, respec- functionality. In Chapter 9, you

tively. These methods create dynamic arrays, will see why this was done.

set up initial values, and free memory used by
the game. The next function, CheckCollisions,
checks for collisions between monsters and the player. GetAction and GetStatus have
the task of returning the last key pressed and the current game status, respectively.
The last method, MoveMonsters, moves the monsters to the player. It is basically the
artificial intelligence of the game.

Implementation

In the next pages, you will see how Monster is implemented. Additionally, I will
refrain from complex descriptions of the code from here on. However, where
needed to help you understand, I will discuss the code in complex areas.

Let’s start with CP1ayer, which is the class that has fewer dependencies.

1. /* '02 Player.cpp' */

3: /* CPlayer complement header file */

eee

7. Developing Monster

e e S

9:
10:
11:
12:
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

Both the constructor and destructor do nothing. They aren’t needed since the ini-
tialization of the class members is performed in CGame. You have Move, which moves
the player position, and RandomLeap, which takes the size of the arena and moves the
player randomly to a place inside the arena, but why are the -1 and +1 there? You
use these offsets to get a number inside the arena, but preventing it from overflow-
ing numerically to one of the borders. So, if an arena is of size 40, you can use rand
() % (ArenaSize.X - 1) to get a number between 0 and 39, and then add one to
make sure the numbers are between 1 and 40. This way, the position is always

oo ~N o o B>

f#include "02 Player.h"

/* Does nothing */
CPlayer::CPlayer ()
{

/* Does nothing */
CPlayer::~CPTayer ()

/* Moves player */

void CPlayer::Move (COORD Direction)
{

m_Position.X += Direction.X;
m_Position.Y += Direction.Y;

}

/* Makes leap to random position */
void CPlayer::RandomLeap (COORD ArenaSize)
{

srand (time (NULL));

m_Position.X
m_Position.Y
}

inside the arena.

LT

(rand () % (ArenaSize.X - 1)) + 1;
(rand () % (ArenaSize.Y - 1)) + 1;

Building Monster 223

I Y

The next set of methods are just to set or get a function, they shouldn’t need any

-——|_|—-—|_.—"”_”‘|5l—l—|_p—'—|_'_

explanation.

34: /* Gets player position */

35: void CPlayer::GetPosition (COORD * Position)
36: {

37: memcpy (Position, &m_Position, sizeof (COORD));
38: }

39:

40: /* Sets player lives */

41: void CPlayer::SetlLives (short Lives)
42 |

43: m_Lives = Lives;

44: '}

45:

46: /* Gets player Tives */

47: short CPlayer::GetLives (void)

48: |

49: return m_Lives;

50: }

51:

52: /* Sets player score */

53: void CPlayer::SetScore (int Score)
54: {

55: m_Score = Score;

56: }

57:

58: /* Gets player score */

59: int CPlayer::GetScore (void)

60: {

61: return m_Score;

62: }

63:

64: /* Sets player available leaps */
65: void CPlayer::Setleaps (int Leaps)
66: {

67: m_Leaps = Leaps;

68: }

69:

224 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

70: /* Gets player available leaps */
71: int CPlayer::GetlLeaps (void)

72: |
73: return m_Leaps;
74:)

And the implementation of CPlayer is complete. Nothing fancy or hard, right? Let’s
move to CGame then.

1 /* '02 Game.cpp' */

2

3: /* CGame complement header file */
4: fHinclude "02 Game.h"

5:

6: /* Init members to initial status */
7: CGame::CGame ()

8: {

9: m_Console = NULL;

10: m_GameStatus = GameSplashScreen;
11: m_LastAction = 0;

12: m_Monsters = NULL;

13: }

14:

15: /* Init members to initial status with console information */
16: CGame::CGame (Conlib * Console)
17: {

18: m_Console = Console;

19: m_GameStatus = GameSplashScreen;
20: m_LastAction = 0;

21: m_Monsters NULL;

22: '}

23:

24. /* Default destructor */

25: CGame::~CGame ()

26: {

27: m_Console = NULL;

28: m_GameStatus = GameSplashScreen;

29: m_LastAction = 0;
30: m_Monsters = NULL;
31: }

32:

33: /* Sets a pointer to the console */

__JE{__Lufj______L_rE;;__7:::

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

void CGame::SetConsole

{

}

int CGame::GetStatus

{

}

Building Monster 225

m_Console

= Console;

IJ—|I_I-——|_|—-—|_.—"”_”‘|5|—I—|_F—|—|_'_

(ConLib * Console)

/* Returns the game status */

return m_GameStatus;

(void)

The constructors and destructors are simple, they initialize the class members. The
next two methods are merely for setting the console and returning the game status.

The following set of functions displays the splash screen and main menu. There is
nothing new here for the most part:

46:
47
48:
49;
50:
51:
52:
53:
54
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70

{

/* Shows the splash screen with playing instructions */
void CGame::ShowSplash (void)

m_Console-
m_Console-
m_Console-

m_Console-
m_Console-
m_Console-
m_Console-
m_Console-
m_Console-
m_Console-
m_Console-
m_Console-
m_Console-

m_Console-
m_Console-
m_Console-

m_Console-
m_Console-
m_Console-

>Clear ();
>QutputString
>QutputString

>QutputString
>QutputString
>QutputString
>QutputString
>QutputString
>OutputString
>OutputString
>QutputString
>OutputString
>OutputString

>SetTextColor
>OutputString
>SetTextColor

>0utputString
>OutputString
>OutputString

("\tWelcome to Monster 1.0 \n\n");
("Playing Monster is very easy. \n\n");
"The objective of the game is to destroy \n");
"all the monsters. Two or more monsters \n");
"are destroyed when they move to the \n");
"same cell in the field. You also lose a \n");
"1ife if you move to a cell where a \n");
"monster is. You move the player with the \n");
"numerical keypad in the eight possible \n");
"directions. You can also press Insert \n");
which will make you leap to a random \n");
"place in the field.\n\n");

(
(
(
(
(
(
(
(
(
(

(ConRed);
("NOTE: Make sure NumLock is turned off.\n\n");
(ConRed | ConGreen | ConBlue);

("There are three difficulties available:\n\n");
(" Easy : Monsters = 10 Arena = 25*15\n");
(" Lives =4 Leaps = 3\n");

226 7. Developing Monster

M'_'Eru—[rl_‘—'—l_l—'l_n

71: m_Console->QutputString (" Medium : Monsters
72: m_Console->0utputString (" Lives
73: m_Console->QutputString (" Hard : Monsters
74: m_Console->QutputString (" Lives
75: }

76:

77: /* Shows the main menu */

78: void CGame::ShowMenu (void)

79: {

80: COORD Position;

81:

82: m_Console->SetBackgroundColor (0);
83: m_Console->SetTextColor (ConRed);
84: m_Console->Clear ();

h ::;__:;ET—J—————rWUJ__Ea__

20 Arena = 35*%18\n");
3 Leaps = 2\n");
30 Arena = 50*23\n");
2 Leaps = 1\n");

\n");

version 1.0 \n");

85:

86: m_Console->SetBackgroundColor (ConRed | ConGreen | ConBlue);
87:

88: m_Console->QutputString ("

89: m_Console->QutputString (" Monster -

90: m_Console->QutputString ("

91:

92: m_Console->SetBackgroundColor (0);

93: m_Console->SetTextColor (ConRed | ConGreen | ConBlue);

94.

95: Position.X = 1;

96: Position.Y = 4;

97: m_Console->SetPosition (Position);

98: m_Console->OutputString ("What do you want to do? ");

99:
100: Position.X = 3;
101: Position.Y = 6;

102: m_Console->SetPosition (Position);

103: m_Console->OutputString ("1 - Start new game - Easy");

104: Position.Y = 7;

105: m_Console->SetPosition (Position);

106: m_Console->0utputString ("2 - Start new game
107: Position.Y = 8;

108: m_Console->SetPosition (Position);

- Medium");

109: m_Console->OutputString ("3 - Start new game - Hard");

110:
111: Position.Y = 10;

Building Monster -4

sy = [—= LI = —1Lr],

112: m_Console->SetPosition (Position);
113: m_Console->0utputString ("Q - Exit game");
114: }

You use ConLib class to make your splash screen and menus, nothing hard. Next
you have ShowGame. This method shows the current status of the game. There are a
few lines that I need to explain, so take a look at the code:

116: /* Shows the actual game */

117: void CGame::ShowGame (void)

118: {

119: COORD Position;

120: int Monster;

121:

122: /* Draw player position */

123: m_Console->SetBackgroundColor (0);

124: m_Console->SetTextColor (ConGreen);

125:

126: m_Player.GetPosition (&Position);

127:

128: m_Console->SetPosition (Position);

129: m_Console->QutputString ("P");

130:

131: /* Draw field */

132: int FieldX, FieldY;

133: m_Console->SetBackgroundColor (ConRed | ConGreen | ConBlue);
134: m_Console->SetTextColor (ConRed | ConGreen | ConBlue);

135:

136: for (FieldY = 0; FieldY <= m_Arena.Y; FieldY++)
137: |

138: if ((FieldY == 0) || (FieldY == m_Arena.Y))
139: {

140: for (FieldX = 0; FieldX <= m_Arena.X; FieldX++)
141: {

142: Position.X = FieldX;

143: Position.Y = FieldY;

144 m_Console->SetPosition (Position);

145 m_Console->OutputString ("#");

146: }

147 }

148: else

149: {

228

7. Developing Monster

150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:

The first thing you do is draw the player; next you draw the field by using two for
loops. The first loop draws each horizontal line. If FieldY is zero or equal to
m_Arena.Y (the borders), you draw a horizontal line using another for loop. If it
isn’t, then it means that the current horizontal line only needs to be drawn at the
beginning and the end of the current line. This piece of code draws the border of

Position.X 0;

Position.Y = FieldY;
m_Console->SetPosition (Position);
m_Console->0utputString ("#");
Position.X m_Arena.X;

Position.Y FieldY;
m_Console->SetPosition (Position);
m_Console->0utputString ("#");

/* Draw monsters */
m_Console->SetBackgroundColor (0);
m_Console->SetTextColor (ConRed);
for (Monster = 0; Monster < m_MonstersNumber; Monster++)
{

if (m_Monsters [Monster].X != 0)

{

m_Console->SetPosition (m_Monsters [Monster]);
m_Console->0utputString ("M");

}

}

/* Show Tives and score */
char Buffer [100];

sprintf (Buffer, " Lives: %d \t\t Score: %d \t Leaps: %d",
m_Player.GetLives () - 1, m_Player.GetScore (),
m_Player.GetLeaps ());

Position.X 5;

Position.Y = 24;

m_Console->SetPosition (Position);

m_Console->SetTextColor (ConRed | ConGreen);

m_Console->0utputString (Buffer);

}

a rectangle of m_Arena dimensions.

Building Monster 229

sy = [—= LI = —1Lr],

The next three methods display a message box explaining that the player lost a life,
lost the game, or won the game:

186: /* Shows game won box */
187: void CGame::ShowWon (void)

188: {

189: ShowGame ();
190:

191: COORD Position;
192:

193: Position.X = 20;
194: Position.Y = 11;

195: m_Console->SetPosition (Position);

196:

197: m_Console->SetBackgroundColor (ConGreen);

198: m_Console->SetTextColor (ConRed);

199:

200: m_Console->0utputString ("{HHHHHHHHHHHHHHEHHHHHHHHEEHHHHHHEEHHHHHHE") ;
201: Position.Y = 12;

202: m_Console->SetPosition (Position);

203: m_Console->0OutputString ("# Congratulations! #");
204: Position.Y = 13;

205: m_Console->SetPosition (Position);

206: m_Console->0utputString ("# You have killed all the monsters. #");
207: Position.Y = 14;

208: m_Console->SetPosition (Position);

209: m_Console->0utputString ("{HHHHHHHHHHHHHHEHHHHHHHHHEHHHHHHEEEHHHHHE") ;
210: }

211:

212: /* Shows 1ife Tost box */

213: void CGame::ShowlLostLife (void)

214: {

215: ShowGame ();
216:

217: COORD Position;
218:

219: Position.X = 20;
220: Position.Y = 11;

221: m_Console->SetPosition (Position);
222:
223: m_Console->SetBackgroundColor (ConGreen);

230

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234
235:
236:
237:
238:
239:
240:
241:
242:
243:
244
245:
246:
247
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:

7. Developing Monster

m_Console->SetTextColor (ConRed);
m_Console->0utputString ("{HHHHHHHHHHHHHHHHHHHHHHEEHHHHHHHHEEHHHHHE") ;
Position.Y = 12;
m_Console->SetPosition (Position);
m_Console->0utputString ("# You have lost a life #");
Position.Y = 13;
m_Console->SetPosition (Position);
" {HHHHHHHHHHHHHHHEHHHHHHHEHHRHAHHEERRRE") 5

m_COHSO] e_>OUtDUtStr1 ng (Ulnininininininisininiinininnininnianinnniinninnnnsnininssn

/* Shows game lost box */
void CGame::Showlost (void)
{

ShowGame ();

COORD Position;

Position.X 20;
Position.Y 11;
m_Console->SetPosition (Position);

m_Console->SetBackgroundColor (ConGreen);
m_Console->SetTextColor (ConRed);

"IIHIIHIIIIIIIIHIIHIIHIIHIIHIIIIIIIIHIIHIIHIIllIIIIIIIIHIIHIIHIIHII“)'
’

m_Console->0utputString ("{HHHHHEHHHHEHEHHEHEHAHHEHEHHHHEHEHHRHEHHE
Position.Y = 12;

m_Console->SetPosition (Position);

m_Console->0utputString ("# Tough Tuck! #);
Position.Y = 13;

m_Console->SetPosition (Position);

m_Console->OutputString ("# You have lost all your lives. #");
Position.Y = 14;

m_Console->SetPosition (Position);

m_Console->0utputString ("{HHHHHHHHHHHHHHHHHHHHHHHEHHHHHHHHEEHHHHHE") |

}

To finalize the ShowXXXX methods, you have the goodbye message:

261:
262:
263:

/* Shows exit text */
void CGame::ShowExit (void)
{

__JE{__Lufj______L_rE;;__7:::

264:
265:
266:
267:
268:
269:
270:
271:
272:

}

Building Monster 231

IJ—|I_I-——|_|—-—|_.—"”_”‘|5|—I—|_F—|—|_'_

m_Console->SetBackgroundColor (0);
m_Console->SetTextColor (ConRed | ConGreen | ConBlue);
m_Console->Clear ();
m_Console->QutputString
m_Console->QutputString

m_Console->0utputString

(
(
m_Console->0utputString (
(
(

m_Console->0utputString

"\n Monster 1.0 \n\n\n");

" by: Bruno Sousa (bsousa@fireworks");
"-interactive.com)\n\n\n\n");

Thanks for playing!\n\n\n");

"And remember, stay away from drugs.\n\n");

The next method, Show, is responsible for calling the appropriate ShowXXXX method

depending on the game status:

274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:

{

/* Shows the correct screen depending on the status */
void CGame::Show (void)

m_Console->SetBackgroundColor (0);
m_Console->SetTextColor (ConRed | ConGreen | ConBlue);
m_Console->Clear ();

switch (m_GameStatus)

{

case GameMainMenu:

ShowMenu ();
break;

case GameRunning:
ShowGame ();
break;

case GameWon:
ShowWon ();
break;

case GamelostlLife:

ShowLostLife ();
break;

case Gamelost:
ShowLost ();
break;

232 7. Developing Monster

e e S

303: case GameExit:

304: ShowExit ();

305: break;

306:

307: case GameSplashScreen:
308: ShowSplash ();

309: break;
310:

311: default:
312: break;
313: 1}

314: }

Next you have StartNewGame:

316: /* Starts a new game */
317: void CGame::StartNewGame (int Difficulty)
318: {

319: int Monster;

320:

321: COORD Position;

322:

323: m_GameStatus = GameRunning;
324:

325: /* Set game difficulty */
326: switch (Difficulty)

327: |

328: case GameEasy:

329: m_MonstersNumber = 10;
330: m_Player.SetlLives (4);
331: m_Player.SetLeaps (3);
332: m_Arena.X = 25;

333: m_Arena.Y = 15;

334: break;

335: case GameMedium:

336: m_MonstersNumber = 25;
337: m_Player.SetLives (3);
338: m_Player.SetLeaps (2);
339: m_Arena.X = 35;

340: m_Arena.Y = 18;

341: break;

342: case GameDifficult:

Building Monster 233

sy = [—= LI = —1Lr],

343: m_MonstersNumber = 35;

344: m_Player.SetLives (2);

345: m_Player.Setleaps (1);

346: m_Arena.X = 50;

347: m_Arena.Y = 23;

348: break;

349: |}

350:

351: /* Create player */

352: m_Player.RandomLeap (m_Arena);
353: m_Player.GetPosition (&Position);
354: m_Player.SetScore (0);

355:

356: /* Create monsters */

357: m_Monsters = new COORD [m_MonstersNumber];
358: srand (time (NULL));

359:

360: /* Calculate random positions for monsters */

361: for (Monster = 0; Monster < m_MonstersNumber; Monster++)
362: |

363: /* Make sure position is different than player's position */
364: do

365: {

366: m_Monsters [Monster].X = (rand () % (m_Arena.X - 1)) + 1;
367: m_Monsters [Monster].Y = (rand () % (m_Arena.Y - 1)) + 1;
368: }

369: while ((m_Monsters [Monster].X == Position.X) &&

370: (m_Monsters [Monster].Y == Position.Y));

371: 1}

372: }

The first thing you do is check the difficulty parameter and based on it, set the
game variables. Next you make the player take a random leap inside the arena.
Then you create a dynamic array of CO0RDs that are the monsters, and initialize all
the monsters to a random position in the arena. This method also compares each
monster position to the player’s position to make sure they are not the same.

The next method returns the current game status:

374: /* Get player action */
375: int CGame::GetAction (void)
376: {

234 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

377: /* Get input from user */

378: m_LastAction = m_Console->GetKey ();
379:

380: return m_LastAction;

381: }

Now a more robust method, MoveMonsters. This is where the artificial intelligence
comes into play. This method moves the monsters to the player:

383: /* Move monsters according to player position */
384: void CGame::MoveMonsters (void)

385: {

386: COORD Distance, Position;

387: int Monster;

388:

389: m_Player.GetPosition (&Position);

390:

391: for (Monster = 0; Monster < m_MonstersNumber; Monster++)
392 {

393: /* Check if monster is dead */

394: if (m_Monsters [Monster].X != 0)

395: {

396: Distance.X = Position.X - m_Monsters [Monster].X;
397: Distance.Y = Position.Y - m_Monsters [Monster].Y;
398:

399: /* Make sure movement is unitary */

400: if (Distance.X > 0)

401: {

402: Distance.X = 1;

403: }

404: if (Distance.X < 0)

405: {

406: Distance.X = -1;

407: }

408: if (Distance.Y > 0)

409: {

410: Distance.Y = 1;

411: }

412: if (Distance.Y < 0)

413: {

414 Distance.Y = -1;

415: }

Building Monster 235

416:

417 /* Move monsters */

418: m_Monsters [Monster].X += Distance.X;
419: m_Monsters [Monster].Y += Distance.Y;
420: }

421: '}

422: }

MoveMonsters iterates through every monster that is alive (coordinates must be dif-
ferent from zero) and subtracts its position from the position of the player. This is
the way you get a coordinate that indicates the distance from the monster to the
player (this is actually a vector subtraction, which you will see later in the book).
The next step is to make sure the monster never moves more than a unit cell; that
is, it only moves one cell. This is done by checking whether any of the elements of
Distance is greater than one (absolute value), and if it is, truncating it to one.

ProcessSplash waits for a key press, and when one key is pressed, the game moves to
the main menu:

425: /* Process splash screen */

426: void CGame::ProcessSplash (void)

427 |

428: /* If user pressed key, just move to main menu */
429: if (m_LastAction)

430: |

431: m_GameStatus = GameMainMenu;

432: 1}

433: }

Next you have ProcessMenu. which waits for a key press and reacts accordingly based
on the key pressed:

435: /* Gets menu option and either quit or start new game */
436: void CGame::ProcessMenu (void)

437 |
438: switch (m_LastAction)
439: |

440: /* Quit game */
441:. case VK_ESCAPE:
442: case 'Q':

443: case 'q':

444 m_GameStatus = GameExit;

445: break;

236 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

446:
447 /* Start new game */
448:. case '1':

449: StartNewGame (GameEasy);
450: m_GameStatus = GameRunning;

451: break;

452: case '2':

453: StartNewGame (GameMedium);
454 m_GameStatus = GameRunning;
455 break;

456: case '3':

457 StartNewGame (GameDifficult);
458: m_GameStatus = GameRunning;
459 break;

460:

461: default:

462: break;

463: |}

464: }

The next two methods are probably the most important of the entire game and
will be explained fully. ProcessGame handles the game specifics like moving the
player, calling other functions, or checking for movement against the arena
bounds:

466: /* Moves player and monsters */
467: void CGame::ProcessGame (void)
468: {

469: COORD Movement;

470: int Monster, MonstersAlive;
471:

472: Movement.X
473: Movement.Y
474

475: /* Move player */
476: switch (m_LastAction)
477: |

478: case VK_UP:

479: Movement.Y = -1;
480: break;

481: case VK_DOWN:

482: Movement.Y = 1;

Building Monster 237

I Y

483:
484:
485
486:
487 :
488:
489:
490:
491:
492
493:
494
495:
496:
497
498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:

break;

case VK_LEFT:
Movement.X = -1;
break;

case VK_RIGHT:
Movement.X = 1;
break;

case VK_HOME:

Movement.X = -1;
Movement.Y = -1;
break;

case VK_PRIOR:
Movement.X = 1;
Movement.Y = -1;
break;
case VK_END:
Movement.X
Movement.Y
break;
case VK_NEXT:

Movement.X = 1;

Movement.Y = 1;

break;
case VK_INSERT:

if (m_Player.GetlLeaps () > 0)
{

o
_ |
.

m_Player.RandomLeap (m_Arena);

=::r——L__r——ﬂ——L4——J1r_“1__EEEEEE““I———T_L_JI—J_L_F

m_Player.SetlLeaps (m_Player.GetlLeaps () - 1);

}
break;
case VK_ESCAPE:
EndGame ();
m_GameStatus = GameMainMenu;
break;
}

/* There was movement */

if ((Movement.X != 0) || (Movement.Y !=0))

{
COORD PlayerPosition;

238

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:
542:
543:
544
545
546:
547
548:
549
550:
551:
552:
553:
554:
555

7. Developing Monster

m_Player.GetPosition (&PlayerPosition);

/* If inside bounds move */

if ((Movement.X + PlayerPosition.X > 0) &&
(Movement.Y + PlayerPosition.Y > 0) &&
(Movement.X + PlayerPosition.X < m_Arena.X) &&
(Movement.Y + PlayerPosition.Y < m_Arena.Y))

{

m_Player.Move (Movement);

}

/* Do monster AI and check for any collision */
MoveMonsters ();
CheckCollisions ();

/* Check to see if any monster is alive */
MonstersAlive = 0;
for (Monster = 0; Monster < m_MonstersNumber; Monster ++)
{
/* Check if monster is dead */
if (m_Monsters [Monster].X != 0)

{
MonstersAlive = 1;
break;
}
}
if (MonstersAlive == 0)
{
m_GameStatus = GameWon;
}

}

The first thing you do in ProcessGame is check which key the user pressed. If it was
any of the keypad keys, it moves the player accordingly, and if the user presses
Insert, it makes the user take a random leap. The user can also press Esc and the
player is taken to the main menu.

Next, you call MoveMonsters and CheckCollisions, which of course, moves the mon-
sters and checks collisions. Finally, you just go through every monster and see
whether there is any monster alive; if there is, the game continues; if there isn’t,
the game’s status changes to GameWon.

Building Monster 239

sy = [—= LI = —1Lr],

557: /* Check for collisions between monsters and player */
558: void CGame::CheckCollisions ()

559: {

560: COORD Position;

561: int MonsterA, MonsterB;

562:

563: m_Player.GetPosition (&Position);

564:

565: for (MonsterA = 0; MonsterA < m_MonstersNumber; MonsterA ++)
566: {

567: /* Check if monster is dead */

568: if (m_Monsters [MonsterA].X != 0)

569: {

570: /* Check for collision with player */

571: if ((m_Monsters [MonsterA].X == Position.X) &&

572: (m_Monsters [MonsterA]l.Y == Position.Y))

573: {

574: m_Monsters [MonsterA]l.X = 0;

575: m_Monsters [MonsterAl.Y = 0;

576:

577: /* Set to see if player has any remaining lives */
578: if (m_Player.GetLives () - 1 <= 0)

579: {

580: m_GameStatus = Gamelost;

581: }

582: else

583: {

584: m_GameStatus = GamelostlLife;

585: 1

586: return;

587: }

588: /* Check for collisions with other monsters */

589: for (MonsterB = MonsterA+l; MonsterB < m_MonstersNumber; MonsterB++)
590: {

591: /* Check if monster is dead */

592: if (m_Monsters [MonsterB].X != 0)

593: {

594 /* Check for collision with monsters */

595: if ((m_Monsters [MonsterA].X == m_Monsters [MonsterB].X) &&

596 (m_Monsters [MonsterA]l.Y == m_Monsters [MonsterBl.Y))

240 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

597: {

598: m_Monsters [MonsterA].X = m_Monsters [MonsterB].X
599: m_Monsters [MonsterA].Y = m_Monsters [MonsterB].Y
600: m_Player.SetScore (m_Player.GetScore () + 15);
601: }

602: }

603: }

604: }

605: '}

606: }

Il
o

Il
o

CheckCollisions goes through every monster and checks for collisions between the
player and the active monster and with other monsters. If there is a collision
between the player and the monster, it changes the game to GameLostLife and if
there is a collision between two monsters, they are both killed.

The next method waits for a key press and changes the game status (state) to
GameMainMenu and calls EndGame.

608: /* End game and return to main menu */
609: void CGame::ProcessWon (void)

610: {

611: /* If user pressed key, just move to main menu */
612: if (m_LastAction)

613: |

614: m_GameStatus = GameMainMenu;

615: '}

616:

617: EndGame ();

618: }

The next method frees all the memory used by the monsters:

620: /* Finish the game */
621: void CGame::EndGame (void)

622: {
623: if (m_Monsters != NULL)
624: |
625: delete [] m_Monsters;
626: }

627: m_Monsters = NULL;
628: }

Building Monster 241

sy = [—= LI = —1Lr],

ProcessLostLife subtracts a life from the player, and if the player runs out of lives, it
ends the game, If, however, the player still has lives, the method moves the player
to a random position, but makes sure the player isn’t in a cell with a monster.

630: /* Removes a life from the player */

631: void CGame::ProcessLostLife (void)

632: {

633: int IsValid = 0;

634: int Monster;

635: COORD Position;

636:

637: /* Remove a life from player, if ran out of lives, end game */
638: m_Player.SetLives (m_Player.GetLives () - 1);

639: if (m_Player.GetlLives () - 1 <= -1)

640: {

641: m_GameStatus = Gamelost;
642: }

643: else

644: {

645: m_GameStatus
646: IsValid = 0;

GameRunning;

647: /* Calculate random position for Player */

648: do

649: {

650: m_Player.RandomLeap (m_Arena);

651: m_Player.GetPosition (&Position);

652:

653: /* Make sure position is different than other monsters position */
654: for (Monster = 0; Monster < m_MonstersNumber; Monster++)
655: {

656: /* Check if monster is dead */

657: if (m_Monsters [Monster].X != 0)

658: {

659: if ((m_Monsters [Monster].X != Position.X) &&

660: (m_Monsters [Monster].Y != Position.Y))

661: {

662: IsValid = 1;

663: }

664: else

665: {

242 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

666: IsValid = 0;

667: }

668: }

669: }

670: }

671: while (IsValid == 0);
672: '}

673: }

ProcessLost waits for a key press and moves the player to the main menu:

675: /* End game and return to main menu */
676: void CGame::ProcessLost (void)

677: {

678: /* If user pressed key, just move to main menu */
679: if (m_LastAction)

680: {

681: m_GameStatus = GameMainMenu;

682: }

683:

684: EndGame ();

685: Show ();

686: }

Process has the job of calling the appropriate ProcessXXXX method depending on
the game status:

688: /* General function that does all tasks for this turn */
689: void CGame::Process (void)

690: {

691: /* Since the splash screen must be shown when we begin, we must
692: force it to be shown because there is no action pending */
693: if (m_GameStatus == GameSplashScreen)

694: |

695: Show ();

696: }

697:

698: /* If user presses a key, act accordingly */

699: if (GetAction ())

700: |

701: switch (m_GameStatus)

702: {

703: case GameMainMenu:

Building Monster 243

sy = [—= LI = —1Lr],

704: ProcessMenu ();
705: break;

706:

707 case GameRunning:
708: ProcessGame ();
709: break;

710:

711: case GameWon:

712: ProcessWon ();
713: break;

714:

715: case GamelLostLife:
716: ProcessLostLife ();
717: break;

718:

719: case Gamelost:
720: ProcessLost ();
721: break;

722:

723: case GameSplashScreen:
724 ProcessSplash ();
725: break;

726:

727: default:

728: break;

729: }

730: Show ();

731: 1}

732: }

And that ends your CGame class. It wasn’t that hard, was it? Hope not! To end this
game you need to code your main function, which is pretty simple:

/* '02 Main.cpp' */

1

2

3 /* ConLib header file */
4: ftinclude "ConlLib.h"

5: /* CGame header file */
6: f#include "02 Game.h"

7.

8

9

/* Start */
: void main ()

244 7. Developing Monster

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

10: {

11: ConlLib Console;

12: CGame Game (&Console);
13:

14: /* Set window title */

15: Console.SetTitle ("Monster");

16:

17: /* Start and run game */

18: while (Game.GetStatus () != GameExit)

19: |
20: Game.Process ();
21: 1}
22: }

You do the basic stuff like declaring a game and a console and then while the game
status is different from GameExit, you call the process, which will do all the neces-
sary game stuff.

Figure 7.3

Your Monster game.

Score: 75

Summary

And you have your Monster game completed. If you understood the concepts of
the game well, you should have no problems doing some small games on your own.
And in case you are thinking this is such a trivial game that couldn’t even be con-
sidered a game by your friends, a version of Monster simpler than the one that you
developed was sold as shareware a few years ago with much success.

CHAPTER 8

ST REAMNMS

246 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

ln this chapter, you will review some of the basic concepts of streams and get a
better understanding how they relate to the hardware devices in your computer.

You will also learn how to load and save data from and to files, and in the end you
will see how you can upgrade the Monster game that you developed in the preced-
ing chapter to allow game saving and loading.

What Is a Stream?*?

A stream, as the name indicates, is a sequence of bytes of data. Streams allow an
abstract way to communicate with any hardware supported both for input and out-
put. The same functions or classes work both for file output or text output in the
screen. They are called device independent.

Streams that receive data from the hard-
ware (either by reading from a file or f
getting keyboard input) are called input NOTE

streams. Streams that pass data to the During the rest of the chapter, the
hardware (saving to a file or outputting word stream will be used for both
text to the screen) are called output normal streams and files. Sometimes,

streams. referring to files as streams is more

) . . convenient for logical reasons.
Streams will be replaced with DirectX

later on for both input and output.

Binary and Text Streams

Streams come in two different packages. They are either binary or text. A text
stream consists of bytes that represent a character, number, or symbol. Text streams
can be as big as 255 characters and are usually terminated with a new end of line
character. See Figure 8.1.

Binary streams, on the other hand, consist of bytes of data that represent the data
as it is, like in memory. They are manipulated as they would be manipulated in
memory.

Input and Output

[

l——|_|—'—|_.—'"|_|_”15I—I—|_|"—|—|_‘_

Binaty (2 bytes)

Teszt (5 bytes)

Figure 8.1

Binary versus text.

‘ 12425 ‘

HHHHA

Whereas text streams are used for
disk files, screen output, keyboard
input, and other uses, binary
streams are usually used for disk
files only. Binary streams are typi-
cally smaller than text streams due
to the way the data is stored. (For
example, the number 23,454,344
can be stored in four bytes using
binary mode because a 32-bit num-
ber can hold roughly plus or minus
2 billion, whereas if you used text
mode you would have to save each
number as an ASCII text character
using eight bytes of memory.)

NOTE

Due to the nature of the stream classes
in C++ some methods are defined in
parent classes that are available to the
child classes, and in these cases, the pro-
totype shown will use the child class as

namespace so it is easier to understand.
If a method isn’t explicitly defined in the
child class and is in the parent class, it
will be treated as if it were defined in
the child class. This causes no problem
to your programming.

L F N

Input and Output

Input and output in C++ is performed using streams. To make the job easier for
the programmers, C++ contains some abstract and generic stream classes that can
be used for just about any input and output device. They are istream and ostream.

istream

The istream class is a generic input class that serves as the base for other derived
classes for input. istream is also derived from another class which is, in turn,
derived from another base class, which honestly, doesn’t interest you a bit.

By focusing on the workings of the istream, you can learn how to use streams to get
input from almost any device. To make things easier, you will use std::cin because
it is automatically supplied to you.

248 8. Streams

get

One of the advantages (or disadvan-

tages, depending on what ground you NOTE

stand on whe.n you deal with default MSDN contains all the possible argu-
parameters) is that the same class func- nfents that each fulletion can use
tion can be used for various purposes, and has the different uses for them.
or, at least, in different ways. get is no Give it a try.

exception because it has eight different
forms, but I will only be focusing on two
of them.

The first method gets only one character from the input buffer:
int istream::get (void);

This function will extract a character from the beginning of the stream and
return it.

The second way to use get is like this:
istream & istream::get (char * pch, int nCount, char delim = '\n');

This extracts all the characters from the stream until the character delim is found
or nCount is reached. This method is usually used to get strings.

Don’t worry about the weird return type because you won’t use it. (It is simply a
reference to the stream.)

1 /* '01 Main.cpp' */

2

3: /* Input Output stream header file */
4: #include <iostreamd

5:

6: /* Start */

7: main (void)

8: {

9: int TypedlLetter;

10:

11: std::cout << "Press q to quit...";
12:

13: /* Wait until user pressed 'q' or 'Q' */

14: Typedletter = std::cin.get ();
15: while ((TypedLetter != 'q') || (TypedLetter != '0Q"))
16: |

Input and Output 249

S [—= LI = —1Lr],

17: TypedlLetter = std::cin.get ();

18: 1}

19:

20: return 0;
21: }

In this program, you first ask for a letter from the user (line 11) and try to acquire
it using the get method of std::cin (line 14).

You then enter a loop that will keep acquiring the letter from the user until he or
she presses the letter Q (lines 15 through 18).

When the user finally presses the letter Q, the program exits.

getline

A very similar function to get is getline. get1ine works the same way as get except
that it removes the delimiter character from the stream whereas get doesn’t.

getline can be used in three different ways, with the following being the most used:
istream & istream::getline (char * pch, int nCount, char delim = "\n");

The parameters and return type are exactly the same as get, so there’s no need to
go over them.

/* '02 Main.cpp' */

1

2

3: /* Input Qutput stream header file */
4: finclude <iostream>
5.

6

7

/* Start */

: main (void)

8: {
9: char TypedString [2561];

10:
11: std::cout << "Type any text: ";
12:
13: /* Get a string from the user */
14: std::cin.getline (TypedString, 256);
15:
16: std::cout << "You typed: " << TypedString;
17:
18: return 0;

19: }

250 8. Streams

Another simple program asks the user for any text (line 11) and then tries to
acquire an entire string from the user using the getLine method (line 14) and out-
puts it to the screen (line 16).

ignore
As the name states, ignore is used to ignore bytes from the stream. This method is

useful, for example, when you are waiting for input from the user, and you simply
want to retrieve a certain number of letters and ignore the rest.

Its prototype is as follows:
istream & istream::ignore (int nCount = 1, int delim = EOF);

nCount is the number of bytes to ignore
and delim is the delimiter when you should
stop ignoring bytes. If ignore reaches the NOTE

delim character, it doesn’t ignore any more EOF is a special character that
characters.

stands for End Of File, or in
your case end of stream.

/* '02 Main.cpp' */

1
2
3: /* Input Qutput stream header file */
4: finclude <iostream>

5:

6 /* Start */

7: main (void)

8: {

9 int TypedlLetter;

10:

11: /* Ignore first two letters */

12: std::cin.ignore (2);

13: TypedlLetter = std::cin.get ();

14:

15: std::cout << TypedlLetter;
16:

17: return 0;

18: }

This program starts by ignoring the first two bytes in std::cin using the method
ignore (line 12). It then gets the next (third) byte in std::cin with get (line 13)
and outputs it to the screen (line 15).

Input and Output 251

S [—= LI = —1Lr],

Extraction Operator (>>)

The extraction operator is a handy operator, which you have been using up to now,
that enables you to retrieve any type of value from a stream without using any spe-
cial function to do it. You can call it a “smart” operator if you want.

The inner logic of this operator is that it’s defined various times in each stream
using a different data type to extract. That is, you can use the >> operators with the
base C++ types, such as chars, ints, and so on, relieving the programmer from the
task of calling each appropriate function for each type.

ostream

ostreamis the opposite of istream. It is used only for output and is where most out-
put streams are derived.

Using std::cout as an example, you can focus more on what each function does
than the actual stream.

put

In output terms, put is sort of the equivalent of get in input terms, with the disad-
vantage that put works only with characters, not strings. put can be used to output a
character to a stream and is defined as follows:

ostream & ostream::put (char ch);

ch is the character you want to output. As with the istream return types, you don’t
need to worry about this either.

/* '04 Main.cpp' */

1

2

3: /* Input Output stream header file */
4: finclude <iostream>
5.

6

7

/* Start */
: main (void)
8: {
9: unsigned char ASCIIValue = 0;
10:

11: while (ASCIIValue < 256)
12: |

252 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

13: /* Qutput ASCII character */
14: std::cout.put (ASCIIValue);
15: ASCIIValue ++;

16: 1}

17:

18: return 0;

19: }

This program starts by entering a while loop while ASCIIValue is less than 256 (line
11). This will ensure that every value in the ASCII table (0 through 255) will be
output.

Inside the while loop, the program outputs the character representation of
ASCIIValue (line 14) and increases it (line 15).

flush

No, I’'m not talking about bathrooms. flush is an output method that enables you
to synchronize the stream buffer with the actual stream. What does this mean?
Well, when you send data to the stream, depending on what method you use, it
may or may not be written at the same time. Generally, there is a buffer associated
with the stream that holds a collection of bytes, which in due time sends to the
stream.

To better exemplify this concept, think of a bucket of water. You don’t put in a lit-
tle bit of water, wash a bit of the floor, then put more water in the bucket, and wash
another bit of the floor, do you? No, you fill the bucket with the necessary amount
of water and then wash the floor. If the floor is too big, you simply empty and refill
the bucket. This is exactly what happens with streams; you first need to fill the
buffer, and only when it is full do you send it to the actual stream.

The flush method forces the buffer to be sent to the stream even if it isn’t full. It is
defined as follows:

ostream & ostream::flush (void);

This is fairly simple to understand.

Insertion Operator (<<)

The insertion operator is basically the same as the extraction operator except that
it is used for output instead of input.

File Streams 53

S [—= LI = —1Lr],

As with the extraction operator, the insertion operator can be used with a variety of
types without any trouble.

File Streams

A special type of stream is a file stream. File streams are nothing more than a logi-
cal connection to a file in the hard drive or other media available.

One of the main differences of file streams compared to other streams is that file
streams must be opened and closed. File streams can also be opened in either text
or binary mode.

File streams are of type ifstream for input only, ofstream for output only, and
fstream for input or output, depending on the way the file is opened. Figure 8.2
illustrates this concept.

Opening and Closing Streams

Before being able to read from or write to a file, you first need to open it. This will
create a link from the stream and the file. After you are done with it, you need to
close the file.

Figure 8.2

Input and output file
fetream
streams.

ifstreatn ofstrearn

254 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

open
You can open a file two ways in C++: You can explicitly call the method open of

fstream, or you can use a constructor with the same parameters as the open method.
You will be focusing on the open method that is defined as:

void fstream::open (const char * szName, int nMode, int nProt = filebuf::openprot);

szName is the actual file name you want to open, and nMode is the way you want to
open the file. Table 8.1 shows all the possible flags when opening files.

The flags in Table 8.1 can be combined with the operator or (||) to open the file
exactly like you want; for example, the following combination of flags:

jos::out | fos::ate | ios::binary

Would mean that the file should be opened for output only and the file marker be
moved to the end of the file and opened in binary mode?

The last parameter is nProt, which is the
file protection you want to open the file NOTE
with. This is the protection, or access
level, you want to allow other programs to
the file you are opening. The access
modes flags are described in Table 8.2.

If you don’t supply the ios::binary

flag when opening a file, the file
will be opened in text mode.

Table 8.1 File Open Modes

Flag Description

i0s::in Opens the file for input

ios::out Opens the file for output

ios::app Moves the file marker at the end of the file and prevents
any data from the original file from being overwritten

ios::ate Moves the file marker at the end of the file

ios::nocreate If the file doesn’t exist, open fails

jos::noreplace If the file already exists, open fails

jos::binary Opens the file in binary mode

File Streams 255

S [—= LI = —1Lr],

TABLE 8.2 File Open Protection Modes

Flag Description
filebuf::sh_compat Compatibility share mode
filebuf::sh_none No sharing
filebuf::sh_read Read sharing
filebuf::sh_write Write sharing

filebuf::sh_read and filebuf::sh_write can be used together with the operator or (| |)

The default mode for opening is filebuf::openprot, which is the equivalent to the
operating system default mode.

You will be using the default mode in your programs, so you don’t need to supply
any value to the function.

close

open’s archenemy is close. When you open a file, you have to close it, because if you
don’t, you will not release the file for other programs, and if it is opened for out-
put, it may end up corrupted. close is defined as follows:

void fstream::close (void);

This closes the file.

/* '05 Main.cpp' */

/* File stream header file */
. #include <fstream.h>

/* Input Output stream header file */
: #Hinclude <iostream>

O N O OB W N

/* Start */

256 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

9: main (void)
10: {
11: /* File streams */
12: fstream FileOne;
13: fstream FileTwo;
14: fstream FileThree;
15:
16: /* Open the file for output in text mode */
17: FileOne.open ("Data.txt", ios::out);
18: /* QOpen the file for output in binary mode */
19: FileTwo.open ("Data.bin", fos::out | fos::binary);
20: /* Open the file for output in appending and text mode */
21: FileThree.open ("Data2.txt", ios::out | ios::app);
22:
23:
24 /* Close files */
25: FileOne.close ();
26: FileTwo.close ();
27: FileThree.close ();
28:
29: return 0;
30: }

Like the previous example, this example is pretty simple. It starts by declaring three
file streams (lines 12 through 14) and then opens them each in their own mode,
using the method open.

In line 17, FileOne is opened for output in text mode. Next, in line 19, FileTwo is
opened for output in binary more, and finally in line 21, FileThree is opened for
output in appending mode.

In the end, you just close the files using the close method (lines 25 through 27).

is open
The last method I should go over about opening and closing files is the is_open

method. This method enables you to check whether a certain stream is opened, so
you can work with it without errors. It is defined as follows:

int fstream::is_open (void) const;

This method returns zero if the disk file isn’t opened, or any nonzero if it is opened.

File Streams 57

S [—= LI = —1Lr],

The following program tries to open and close various files using different flags
and shows whether it was successful:

1. /* '06 Main.cpp' */

2:

3: /* File stream header file */

4: finclude <fstream.h>

5: /* Input Output stream header file */
6: #include <iostream>

7:

8: /* Start */

9: main (void)
10: |
11: /* File stream */
12: fstream File;
13:
14: std::cout << "Trying to open Data.txt for output..." << std::endl;

15: /* Open the file normally */
16: File.open ("Data.txt", ios::out);
17: if (File.is_open ())

18: |

19: std::cout << "File opened successfully..." << std::endl;
20: }

21: else

22: |

23: std::cout << "File not opened..." << std::endl;

24: 1}

25: File.close ();

26:

27: /* Open the file without replacing */

28: std::cout << "Trying to open Data.txt with ";

29: std::cout << "jos::noreplace..." << std::endl;

30:

31: File.open ("Data.txt", fos::out | ios::noreplace);
32: if (File.is_open ())

33:

34: std::cout << "File opened successfully..." << std::endl;
35: 1}

36: else

37: |

258 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

38: std::cout << "File not opened..." << std::endl;
39: }

40: File.close ();

41:

42: /* Open the file without creating */

43: std::cout << "Trying to open Data2.txt with ";
44: std::cout << "ios::nocreate..." << std::endl;

45:

46: File.open ("Data2.txt", ios::out | ios::nocreate);
47. if (File.is_open ())

48: |

49: std::cout << "File opened successfully..." << std::endl;
50: }

51: else

52: |

53: std::cout << "File not opened..." << std::endl;
54: }

55: File.close ();

56

57: return 0;

58: }

This program tries to open three files in three different ways and depending on
whether they were successful or not, shows the corresponding message.

It starts by declaring a file stream (line 12) and then tries to open it for output only
(line 16) as Data.txt. Next, you use the is_open method (line 17) to determine
whether the file was opened successfully, and if so, tell the user that the file was
opened (line 19), and if not, tell the user that the file wasn’t opened (line 23).

You then close the file (line 25) and try to reopen the file, this time for output
without replacing an existing file as Data.txt (line 31). Then depending on whether
it is opened or not (line 32), show the appropriate message (lines 33 through 39),
and close the file (line 40).

Finally, you try to open the file for output without creating a file as Data2.txt (line
46). Then, again, depending on whether it is opened or not (line 47), show the
appropriate message (lines 48 through 54), and close the file (line 55).

Only the first try to open the file should be successful, because the second try
attempts to open the file Data.txt without replacing it, and because it already exists,
it should fail. The third attempt tries to open Data2.txt that doesn’t exist without
creating it, and so, should fail also.

File Streams 259

S [—= LI = —1Lr],

Text

Because you already went through the process of generic text input and output, I
will not go over much more than a few examples. In the end of this section, you
will create a small program that counts the number of lines in a file and outputs
files that resemble the code listings in this book.

To be able to read something from a file, you first need to have a file with data. You
could pick one random file from your Windows directory and try to read from it,
but it would be more than likely that you wouldn’t get any useful data. Because of
this, you will first create a program that outputs a sequence of data to a file and
then another program that reads and displays that data.

Your first program should ask the user for his or her first name, last name, age, and
whether he or she is married, and then store all the data in a file:

1: /* '07 Main.cpp' */

2:

3: /* File stream header file */
4: fHinclude <fstream.h>

5: /* Input Output stream header file */
6: #include <iostream>

7:

8: /* Start */

9: main (void)
10: {
11: /* File stream */

12: fstream File;

13: /* Program data */

14: char FirstName [256];

15: char LastName [256];

16: int Age;

17: char IsMarriedReturn;

18: bool IsMarried;

19:

20: /* Open the file for output */
21: File.open ("Data.txt", ios::out);

22:

23: /* 1If file was opened successfully continue */
24: if (File.is_open ())

25: |

26: std::cout << "What is your first name:

260

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:

Streams

std::cin >> FirstName;
std::cout << "What is your last name: ";
std::cin >> LastName;
std::cout << "What is your age: ";
std::cin >> Age;
std::cout << "Are you married (y for yes, anything else for no): ";
std::cin >> IsMarriedReturn;
if ((IsMarriedReturn == 'y' || IsMarriedReturn == 'Y"))
{
IsMarried = true;
}
else
{
IsMarried = false;
}

/* Write data to file */

File
}

<< FirstName << " " << LastName << " " << Age << " " <L IsMarried;

/* Close file */
File.close ();

return 0;

}

This program starts by declaring a file stream and a few variables (lines 12 through
18) and opening it for output in text mode (line 21). After that, it checks to see
whether the file was opened successfully (line 24) and if so, gets the information
from the user (lines 25 through 43).

Just in case you haven’t noticed, you used a char to see whether the user was mar-
ried (line 34). You did this because std::cin doesn’t have any input method that
retrieves a bool. So, you use a char and see whether it was the letter Y the user
pressed (line 36), and if so, set the value of IsMarried accordingly (lines 37
through 43).

After all data is gathered, the program uses the insertion operator (line 46) to save
the data to the file and finally closes the file (line 50).

File Streams 2b1

S [—= LI = —1Lr],

Now that you have your data, you need a program that reads the data from the file
and outputs it to the screen:

1. /* '08 Main.cpp' */

2:

3: /* File stream header file */
4: finclude <fstream.h>

5: /* Input Output stream header file */
6: #include <iostream>

7:

8: /* Start */

9: main (void)
10: |
11: /* File stream */

12: fstream File;

13: /* Program data */
14: char FirstName [256];
15: char LastName [256];

16: int Age;
17: int IsMarried;
18:

19: /* QOpen the file for input */
20: File.open ("Data.txt", ios::in);

21:

22: /* If file was opened successfully continue */

23: if (File.is_open ())

24: |

25: /* Read data from file */

26: File >> FirstName >> LastName >> Age >> IsMarried;

27:

28: std::cout << "Your name is " << FirstName << " " << LastName;
29: std::cout << " and you are " << Age << " years old." << std::endl;
30:

31: if (IsMarried == 1)

32: {

33: std::cout << "Good luck on your marriage!" << std::endl;

34 }

35: else

36: {

37: std::cout << "Good Tuck finding someone!" << std::endl;

262 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

38: }

39: 1}

40:

41: /* Close file */
42: File.close ();
43:

44: return 0;

45: 1}

Here you do the opposite of the preceding program and read the information
from the file and output it to the screen.

You start by declaring some needed variables (lines 12 through 17) and opening
the file for input in text mode (line 20). If the file was opened successfully (line
23), you retrieve the information from the file using the extraction operator

(line 26). After that you output the information to the screen (lines 28 through 39)
and close the file (line 42).

Because you are probably bored to death right now, it’s time to bring in a little pro-
gram that has some actual use. It is the line counter, which is very similar to the
one I used to do the code listings:

1: /* '09 Main.cpp' */

2:

3: /* File stream header file */
4: {Hinclude <fstream.h>

5: /* Input Output stream header file */
6: #include <iostream>

7:

8: /* Start */

9: main (void)

10: |

11: /* File streams */

12: fstream InputFile;

13: fstream OutputFile;

14

15: /* Program data */

16: char 1InputFileName [2561;
17: char OQutputFileName [256];
18: char TempInLine [256];

19: char TempOutLine [256];
20:

21: long CurrentlLine = 0;

File Streams b3

22:

23: /* Get file names */

24: std::cout << "Input file name: ";

25: std::cin >> InputFileName;

26: std::cout << "Output file name: ";

27: std::cin >> OutputFileName;

28:

29: /* Open files */

30: InputFile.open (InputFileName, io0s::in);

31:

32: if (InputFile.is_open ())

33: |

34: OutputFile.open (QutputFileName, ios::out);
35:

36: if (OutputFile.is_open ())

37: {

38: while (1)

39: {

40: /* Increase line count */

41: if (EOF == InputFile.peek ())

42: {

43: break;

44 }

45:

46: /* Get the Tine and increase line count */
47 Currentline ++;

48: InputFile.getline (TempInLine, 256);

49:

50: /* Format the Tine with the Tine number and write to the file */
51: sprintf (TempOutLine, "%1d: %s\n", CurrentlLine, TempInLine);
52: QutputFile << TempOutline;

53: }

54

55: OutputFile.close ();

56: }

57: InputFile.close ();

58: }

59:

60: return 0;

61: }

264 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

The first thing you do is declare two file streams (lines 12 and 13), four strings—
two for the file names and another two for file lines (lines 16 through 19) —and a
counter for the total of lines (line 21).

Next, you get the input and output file names from the user (lines 24 through 27)
and try to open first the input file (line 30), and then the output file (line 34). If
both files were opened successfully (lines 32 and 36), continue with the program.

Next, you enter a while loop (line 38) which will only end when you reach the end
of the file (lines 41 through 44). In the loop, you increase the total number of lines
(line 47) and get the appropriate line from the input file (line 48). You then for-
mat the string adding the line number before it (line 51) and output it to the file
(line 52).

In the end, you close both files (lines 55 and 57).

Binary

I already talked about the differences between text and binary streams, but you
might still be wondering why is it more common to use binary files than text files,
which are easier to understand. One of the already mentioned reasons is that
binary files are typically smaller than text files. It’s easier for humans to read the
number 3482234 like this, but for the computer, it is ten times easier to read it like
this: 1101010010001001111010. Yes, it is the binary representation of 3482234.
Most of the files in your hard drives are binary: executables, dlls, and many others.

Working with binary files isn’t as hard as you may think; actually, it’s fairly easy as
you will see next.

write

As you probably have imagined, write is used to write to a file. Writing in binary
mode is a little different than writing in text mode. Whereas in text mode you had
various methods to output the data, in binary mode, you have write that writes a
certain number of bytes to the files. write is defined as follows:

fstream & fstream::write (const char * pch, int nCount);

pch is a pointer to the buffer which holds the data you want to write, and nCount is
the number of bytes you want to write.

Before I continue with an example, let’s go over one simple thing. pch must be a
pointer to a char, although you may want to write to the file an int or even a class.

File Streams b5

This is done because a char is the smallest variable type existing in C++ (one byte).
The obvious solution would be to cast the type to a char using C++ casts, but you
won’t do this. You will use C casting to convert any pointer to a char pointer. This
can be done like so:

(char *) &A_Class;

The preceding line of code would cast the address of A_C1ass to a pointer of type
char. You could then use this in the write functions like this:

File.write ((char *) &A_Class, sizeof (A_Class_Type));

This writes A_Class (which implicitly is of type A_Class_Type) to the file.
C casting follows this form:

(Type_To_Cast) OriginalVariable;

This casts OriginalVariable, whichever the type is, to a variable of Type_To_Cast.

NOTE

When you want to write various elements, like an entire
array, you would make pch point to the first element of
the array, and nCount being the number of elements to

write times the size of the element like this:

SomeClass Data [10];

/* .. */

File.write ((char *) Data, 10 * sizeof (SomeClass);

L4 FN

So, for your example you will use the same code from the text output example and
make it save the data as binary:

/* '10 Main.cpp' */

/* File stream header file */

: #include <fstream.h>

/* Input Output stream header file */
: #include <iostreamd>

O N oy OB W N

/* Start */

266 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

9: main (void)
10: {
11: /* File stream */
12: fstream File;
13: /* Program data */
14: char FirstName [256];
15: char LastName [256];
16: int Age;
17: char IsMarriedReturn;
18: bool IsMarried;
19:
20: /* Open the file for output */
21: File.open ("Data.bin", fos::out | ios::binary);

22:

23: /* If file was opened successfully continue */
24: if (File.is_open ())

25: |

26: std::cout << "What is your first name: ";
27 std::cin >> FirstName;

28: std::cout << "What is your last name: ";
29: std::cin >> LastName;

30: std::cout << "What 1is your age: ";
31: std::cin >> Age;

32:

33: std::cout << "Are you married (y for yes, anything else for no):
34: std::cin >> IsMarriedReturn;

35:

36: if ((IsMarriedReturn == 'y' || IsMarriedReturn == 'Y"))
37: {

38: IsMarried = true;

39: }

40: else

41: {

42: IsMarried = false;

43: }

44

45: /* Write data to file */

46: File.write ((char *) &FirstName, sizeof (char) * 256);
47: File.write ((char *) &LastName, sizeof (char) * 256);
48: File.write ((char *) &Age, sizeof (int));

49: File.write ((char *) &IsMarried, sizeof (bool));

File Streams eb7

50:)

51:

52: /* Close file */
53: File.close ();
54

55: return 0;

56: }

This program does exactly the same thing as the text version of it except that
instead of opening the file in text mode, it opens it in binary mode (line 21) and
uses the method write to save the information to a file (lines 46 through 49).

read

read is your first binary reading function. It is used to read a sequence of bytes in
binary mode from a stream. read is also defined various times using different types.
The most used definition is as follows:

fstream & fstream::read (char * pch, int nCount);

pch is a pointer to the buffer where the bytes will be stored, and nCount is the num-
ber of bytes to read.

1: /* '"11 Main.cpp' */

2:

3: /* File stream header file */
4: ffinclude <fstream.h>

5: /* Input Qutput stream header file */
6: #include <jostreamd>

7:

8: /* Start */

9: main (void)
10: {
11: /* File stream */

12: fstream File;

13: /* Program data */
14: char FirstName [256];
15: char LastName [256];

16: int Age;
17: int IsMarried;
18:

19: /* QOpen the file for input */
20: File.open ("Data.bin", fos::in | ios::binary);

268 8. Streams

[== = 5 I — =L re

21:

22: /* If file was opened successfully continue */
23: if (File.is_open ())

24: |

25: /* Read data from file */

26: File.read ((char *) &FirstName, sizeof (char) * 256);
27: File.read ((char *) &lLastName, sizeof (char) * 256);
28: File.read ((char *) &Age, sizeof (int));

29: File.read ((char *) &IsMarried, sizeof (bool));

30:

31: std::cout << "Your name is " << FirstName << " " << LastName;
32: std::cout << " and you are " << Age << " years old." << std::endl;
33:

34 if (IsMarried == 1)

35: {

36: std::cout << "Good Tuck on your marriage!" << std::endl;

37: }

38: else

39: {

40: std::cout << "Good luck finding someone!" << std::endl;

41: }

42: }

43:

44 /* Close file */
45: File.close ();
46:

47: return 0;

48: }

Again, this program does the same thing as the text version but in binary mode by
opening the file in binary mode (line 20) and using the read method to get the
information from the file (lines 26 through 29).

seekg

A few more functions that you should be aware of are used to move and retrieve
the position marker in the stream. For example, if you want to ignore the first ten
bytes of data, you use a function that moves you ten bytes forward to the beginning
of the stream.

The function to move the get marker (for input) is seekg, which is defined as follows:

fstream & fstream::seekg (streamoff off, ios::seek_dir dir);

File Streams 269

R e e i

off is the offset to move the get marker, and dir is the direction. The possible types
for dir are shown in Table 8.3.

seekp

The equivalent for output of seekg is seekp, which moves the put marker and is
defined as follows:

fstream & fstream::seekp (streamoff off, ios::seek_dir dir);

The parameters are equivalent to seekg.

tellg

tellg is the opposite of seekg. It is used to get the position of the get marker and is
defined as follows:

streampos fstream::tellg (void);

This returns the position of the get marker.

tellp

As with seekg, you also have a method to
return the position of the put marker: tellp,
which is defined as follows: NOTE

Both streamoff and streampos
streampos fstream::tellp (void); correspond to 1ong types.

This returns the position of the put marker.

TABLE 8.3 Seek Direction Types

Flag Description

jos::beg Seek from the beginning of the stream
jos::cur Seek from the current position of the stream
jos::end Seek from the end of the stream

When using 10s::end, of f must be a negative value.

270 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Modifying Monster
to Save and Load Games

Modifying your previous game Monster to save and load games isn’t difficult. You
add a couple of functions to CGame and one to CPlayer, and modify three existing
functions to allow the user to press either the S key to save or the L key to load the
game. You will first see how to modify the functions from the following code.
Figure 8.3 also illustrates this concept.

78: void CGame::ShowMenu (void)
/% . */
108: m_Console->SetPosition (Position);
109: m_Console->QutputString ("3 - Start new game - Hard");
110: Position.Y = 10;
111: m_Console->SetPosition (Position);
112: m_Console->OutputString ("L - Load game");
113:
114: Position.Y = 12;
115: m_Console->SetPosition (Position);
116: m_Console->QutputString ("Q - Exit game");

117: }
/* o */
Figure 8.3
Changing Monster
to allow saving.
Yes - Load Mo - Start new
game gatrie

L]

Play

Modifying Monster to Save and Load Games 271

S [—= LI = —1Lr],

You have modified this method to let the user know that he or she can load a previ-
ously saved game by showing "L - Load game" as an option in the menu (lines 110
through 112).

120: void CGame::ShowGame (void)

[* . */

177: char Buffer [100];

178:

179: sprintf (Buffer, "Lives: %d Score: %d Leaps: %d S - Save Game",
180: m_Player.GetLives () - 1, m_Player.GetScore (),

181: m_Player.GetLeaps ());

182: Position.X = 0;

/% . */

Again, you have just modified this function to let the user know he can save the
game by pressing S (line 179).

440: void CGame::ProcessMenu (void)
/* . */

460: case '3':

461: StartNewGame (GameDifficult);
462: m_GameStatus = GameRunning;

463: break;
464: case 'L':
465: case '1':

466: StartNewGame (GameEasy);
467 : Load ();
468: m_GameStatus = GameRunning;

469: break;
470:

471: default:
472: break;
473: '}

/[* . */

You have changed this function so that if the user presses the L key in the main
menu, the game is loaded (lines 464 through 468).

2’72

8. Streams

_ljl—q_rl—lEr”_”'l—‘_.—u

E::T__Ezgj__r_____JﬂL”J——1;L__

Now you should add a few methods to the classes, which aren’t many. To avoid con-
fusion, let’s see the entire classes redefined:

1:
/* ...
8:

9:
10:
11:
12:
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:

/* '12 Player.h' */
*/

/* Player class */
class CPlayer
{
private:

/* Player attributes */
COORD m_Position;
short m_Lives;

int m_Score;
int m_Leaps;
pubTic:

/* Constructor / destructor */
CPlayer ();
~CPlayer ();

/* Move player */
void Move (COORD Direction);
void RandomLeap (COORD ArenaSize);

/* Maintenance methods */
void GetPosition (COORD * Position);

void Setlives (short Lives);
short GetlLives (void);

void SetScore (int Score);
int GetScore (void);

void SetlLeaps (int Leaps);
int Getleaps (void);

void SetPosition (COORD * Position);
b

/* Print */

Modifying Monster to Save and Load Games 273

S [—= LI = —1Lr],

In the CPlayer class you added a SetPosition method to enable you to set the saved
player position when loading a file.

1. /* '12 Game.cpp' */
/* . */
36: /* Game base class */
37: class CGame

38: |
39: private:
40:

41: /* Input/output information */
42: ConLib * m_Console;

43: int m_LastAction;
44 .

45; /* Game information */
46: int m_GameStatus;
47: COORD m_Arena;

48: (CPlayer m_Player;
49: COORD * m_Monsters;

50: int m_MonstersNumber;

51:

52: public:

53:

54 /* Constructors / destructor */
55: CGame ();

56: CGame (ConLib * Console);

57: ~CGame ();

58:

59: /* Shows the relative information depending on game status */
60: void ShowSplash (void);

61: void ShowMenu (void);

62: void ShowGame (void);

63: void ShowWon (void);

64: void ShowlostLife (void);

65: void ShowlLost (void);

66: void ShowExit (void);

67: void Show (void);

68:

69: /* Process the turn depending on game status */
70: void ProcessSplash (void);

71: void ProcessMenu (void);

274 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

72: void ProcessGame (void);

73: void ProcessWon (void);

74: void ProcessLostlLife (void);
75: void ProcesslLost (void);

76: void ProcessExit (void);

77: void Process (void);

78:

79: /* Set console information */

80: void SetConsole (ConLib * Console);
81:

82: /* Game methods */

83: void StartNewGame (int Difficulty);
84: void EndGame (void);

85: void CheckCollisions ();
86: int GetAction (void);

87: int GetStatus (void);

88: void MoveMonsters (void);
89:

90: /* Load / Save methods */
91: wvoid Load (void);

92: void Save (void);

93: };

In CGame, you added two methods, Load and Save, which are the basis for loading
and saving the game.

1. /* '"12 Player.cpp' */
/* L00x]
76: /* Sets player position */
77: void CPlayer::SetPosition (COORD * Position)
78: {
79: m_Position.X = Position->X;
80: m_Position.Y = Position->Y;
81: }

This is a relatively easy method, isn’t it? You use a COORD type to set the new player
position in the arena.

1: /* '12 Game.cpp' */
/* .0 %/
749: /* Loads a previously saved game */
750: void CGame::Load (void)
751: {

Modifying Monster to Save and Load Games 275

752: fstream File;

753:

754: File.open ("Monster.sav", ios::in | ios::binary);
755:

756: if (File.is_open ())

757: A

758: COORD PlayerPosition;
759: short PlayerLives;
760: int PTayerScore;
761: int PlayerLeaps;

762:

763: /* Load the game from the file */

764: File.read ((char &m_Arena, sizeof (COORD));

765: File.read ((char &PlayerPosition, sizeof (COORD));
766: File.read ((char &PTayerLives, sizeof (short));

(
(
(
768: File.read ((char &Playerleaps, sizeof (int));

769: File.read ((char &m_MonstersNumber, sizeof (int));
770: if (m_Monsters != NULL)

*)
(*)
(*)
767: File.read ((char *) &PlayerScore, sizeof (int));
(*)
*)

771: {

772: delete [] m_Monsters;

773: }

774: m_Monsters = new COORD [m_MonstersNumber];

775: File.read ((char *) m_Monsters, sizeof (COORD) * m_MonstersNumber);
776:

777: /* Set information from player class */

778: m_Player.SetPosition (&PTayerPosition);
779: m_Player.SetlLives (PlayerLives);
780: m_Player.SetlLeaps (PlayerlLeaps);
781: m_Player.SetScore (PlayerScore);

782: '}

783:

784: File.close ();
785: }

Now, there is one very important method: CGame: : Load. This method is responsible
for loading a previously saved game. It opens a file for input in binary mode (line
754) and declares a few temporary variables (lines 758 through 761) for storing the
player information. It then uses the read method to get both the game and player
data from the file (lines 764 through 775) and sets the m_Player data accordingly
(lines 778 through 781).

276 8. Streams

NOTE

A quick note before proceeding: you probably have

noticed that you delete the current monsters (lines 770
through 773) and allocate a new array for the loaded
game (line 775).This is done because the current game
and the saved game may have a different number of
monsters, and as such, need different array sizes.

787: /* Saves the current game */
788: void CGame::Save (void)

789: {

790: fstream File;

791:

792: File.open ("Monster.sav", ios::out | fos::binary);
793:

794: if (File.is_open ())

795: |

796: COORD PlayerPosition;

797: short PlayerLives;

798: int PTayerScore;

799: int PlayerLeaps;

800:

801: /* Get information from player class */

802: m_Player.GetPosition (&PlayerPosition);

803: PlayerLives = m_Player.GetLives ();

804: PlayerlLeaps = m_Player.GetlLeaps ();

805: PlayerScore = m_Player.GetScore ();

806:

807: /* Save the game to the file */

808: File.write ((char *) &m_Arena, sizeof (COORD));

809: File.write ((char *) &PlayerPosition, sizeof (COORD));
810: File.write ((char *) &PlayerLives, sizeof (short));
811: File.write ((char *) &PlayerScore, sizeof (int));
812: File.write ((char *) &Playerleaps, sizeof (int));
813: File.write ((char *) &m_MonstersNumber, sizeof (int));

Summary 277

S [—= LI = —1Lr],

814: File.write ((char *) m_Monsters, sizeof (COORD) * m_MonstersNumber);
815: }

816:

817: File.close ();

818: }

You have now reached the last function: Céame: :Save. Here you will do the opposite
of CGame: :Load and save the game.

You first open the file for output in binary mode (line 792) and by declaring a few
temporary variables (lines 796 through 799). You then get the player information

from m_Player (lines 802 through 805) and use the write method to save the game
to the file (lines 808 through 814). Figure 8.4 illustrates this concept.

TR o] Figure 8.4

You finish the function
by closing the file (line
818).

Summary

In this chapter, you have browsed a very important aspect of programming—work-
ing with files.

Knowing how to read and write information to files is critical because it allows you
to use external files for data for your program, thus keeping the code separate
from the data.

You also learned the advantages of developing games with classes by means of
upgrading Monster to save and load games without much hassle.

278 8. Streams

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

OQuestions and Answers

Q: How can a stream be used to communicate with files and the monitor and key-
board?

A: Streams are just sequences of bytes that are associated with a device. Although
the operating system takes care of the communication with the hardware, C++
offers an easy-to-use interface for streams and also specific methods and classes for
each stream.

Q: Why do binary files use less space than text files?

A: Because numbers in text files are stored as characters, the number 132 is stored
as the string “132”, which uses three bytes. In binary, the number is stored like that
but in binary form, so it will only use one byte. Although this number doesn’t
prove this, a float like 23923.3242343 will use 13 bytes in text mode but only four
in binary.

Q: Why do you need to cast to char when using Write or Read methods of the
fstream family of streams?

A: In C++, the char type is the smallest variable possible (using one byte). C++ uses
the char type, so it will ensure that the correct number of bytes is written or read.

Exercises
1. What is a stream?
2. What is the difference between a normal stream and a file stream?

3. Modify the line counter program to make room for empty before the num-
bers (like the ones in the book) to allow a correct alignment of the code.

4. What is wrong with the following code?

fstream File;

File.open ("Data.bin", fos::in | fos::binary);
File.open ("Data.bin", fos::out | ios::binary);
File.close ();

5. On your own, try to make the Monster game ask for a file name before sav-
ing and loading.

s Wy OB o : W
e, R e B M= — | *\J—LN%—JJLF

CHAPTER 9

EAS1C
HOFTWARE
HRCHITECTURE

280 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Now that you have a fairly good understanding of the C++ language, you need
to learn how to make your code reusable, clean, and easy to use.

In this chapter, you will learn basic techniques to develop better code. You will also
be exposed to two of the most common approaches to software design, the funda-
mentals of working with modules, a few function and variable naming techniques,
and the design that will be used in the upcoming chapters.

The Importance
of Software Design

When you build a house, either you build it right, or you build it wrong, in which
case, it will eventually fall. The same is true when building a piece of software. If
you try to build a program with no techniques or plan, the result is a broken piece
of software, a few months of your life wasted, not to mention that you’re broke (in
case you took your kids’ college money to fund your project). To prevent this (and
you want to prevent this, don’t you?), you will use some basic techniques that will
probably be lifesavers in the long run.

Until a few years ago, software design and architecture was almost a forbidden
topic among game developers. Programmers thought of themselves as a revolution-
ary and genius who didn’t need to follow any rules. Of course, this industry (and
game development is an industry) has grown considerably in the past few years,
from the players to the makers. This growth introduced a few rules that many
game companies now follow and love. Here are some of those rules, but there are a
million more, and as you gain more experience, you will probably develop your
own rules.

Through this chapter, you will see some standard and not so standard techniques
that will be used throughout the rest of the book when you start developing your
game library.

Design Approaches 281

sy = [—= LI = —1Lr],

Design Approaches

When developing software, there are usually two approaches: top down and bottom
up. They have both proven successful and choosing which to use will be based
more on the type of project and personal taste than anything else.

Top Down

One of the approaches you will analyze is the top down approach. This works by
defining a higher-level objective, and by slowly dividing each objective into smaller
ones until the basic levels have been achieved. Usually start with main and gradually
develop all the routines and classes needed. This system is particularly beneficiary
for systems layout in a hierarchical fashion, as can be seen in Figure 9.1.

An advantage of this system is its easiness. Dividing each section into smaller sec-
tions makes it easier for people to understand and work with it.

One of the main disadvantages is usually the identification of the top routine,
which only gets worse if you have several top routines or objectives of similar
importance.

Figure 9.1

In a top down

approach, the system is

decomposed in sections,

and those sections are
developed to produce
the final software.

2872 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Bottom Up

The other approach I will explain is the bottom up approach. In this system you
start by defining all the low-level details of your software or module and gradually
combining them into something bigger. This method is described in Figure 9.2.

The bottom up approach is good for developing modules where you can define
their functionality in text or in a list and then convert them to a working module
by defining each low-level component and joining them as if they were a puzzle.

The main disadvantage of this technique is that it is usually too abstract to be used
exclusively. If you don’t know what kind of house you want to build, you don’t
know which materials you will need, do you?

Top Down Versus Bottom Up

Probably the best approach to take is to merge the preceding two, using the best of
each.

Use the top down approach to specify the main objectives and the design of the sys-
tem. Use the bottom up approach to define each of the system components. Then
join both to produce the final design. This method is beneficial because you rule
out most of the disadvantages of each approach.

Figure 9.2

In a bottom up

approach, the system is
composed by producing

low-level sections
combined to build the
‘ ‘ ‘ ‘ ‘ ‘ final software.

Some Basic Techniques 283

sy = [—= LI = —1Lr],

Some Basic Techniques

There a few basic techniques, that if used properly, can really help you avoid errors
and help improve development time. All these techniques are presented here
through good and bad code examples.

Example 1: Assignment
Instead of Equality Operator

/* Example 1 - Bad */
if (Pointer = NULL)
{
/* Code here */
}

If you are paying attention, you have probably noticed that this code, even if it
compiles correctly, isn’t what you want. Instead of testing whether Pointer is NULL,
you are actually assigning it to NULL. This is a common error to commit, because it
is usually a typing error, but still a tough one to spot. The corrected version would
be the following:

/* Example 1 - Correct */
if (Pointer == NULL)

{

/* Code here */

}

This is the correct code you wanted. What can you do to help prevent this error?
When using the equality operator to check variables against constants, a nice trick
to use is to switch their order like so:

/* Example 1 - Good */
if (NULL == Pointer)

{

// Code here

}

Because NULL is a defined constant, even if you had used the assignment operator,
the compiler would give you an error. Using this method, you know that you will
never use an assignment operator where you wanted to use the equality operator.

284 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Example 2: Statements
Versus Blocks

/* Example 2 - Correct */
if (NULL == Pointer)
Alloc (Pointer);

Even if this example is correct, it is tricky. If you want to add another statement to
be executed, you would probably put it below A11oc (Pointer); like so:

/* Example 2 - Bad */

if (NULL == Pointer)
Alloc (Pointer);
Init (Pointer);

As you can see, Init (Pointer); would always be called whatever the value of
Pointer. A safe way to prevent this error is to always use code blocks, even if you
only want to call one statement, when situations like this exist:

/* Example 2 - Good */
if (NULL == Pointer)

{

Alloc (Pointer);

Init (Pointer);

}

This way, if you want to add more code, you would automatically add it to the code
block, like it should be.

Example 3: Macros
Versus Inline Functions

One of the more debated arguments among C++ programmers is when to use
macros and when to use inline functions. Here I present a case where the use of a
macro should be avoided.

/* Example 3 - Bad */
fidefine MAX(a,b) (a > b) ? a : b

/* . */
short A, B, Bigger;
A=B=0;

Bigger = MAX (A, B++);

Some Basic Techniques 285

sy = [—= LI = —1Lr],

The first thing to notice is that B will be increased before using it, but it should only
be incremented after using it. The second thing to note is that in the end, B will be

two instead of one. This is because b is used twice in the macro, because you define

b as B++, it is incremented twice.

You could fix this code by using the postincrement operator after the macro, but
this would be limiting to use, and a less experienced programmer may forget and
before the bug is found it will be too late. A better way to fix this would be to actu-
ally use an inline function like so:

/* Example 3 - Good */
inline Tong MAX (short a, short b)
{

return (a > b) 72 a : b;

}

/* . */
short A, B, Bigger;
A=B=0;

Bigger = MAX (A, B++);

This way, B is only incremented in the end, and only once.

Example 4: Private
Versus Public, the First Case

A good example of when class members should be private is for class state holders.
The following example allows uncontrolled use of the class variables:

/* Example 4 - Bad */
class Data
{
pubTic:
short * m_pData;
short m_sMaxData;
/* o *
}

This code allows access to any of the members of Data. If m_pData was allocated
using, for example, the following:

Data::Data ()
{

286 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

m_pData = new short [10];
m_sMaxData = 10;
}

The programmer could commit the error of doing:

Data Values;
Values.m_pData [11] = 23;

Which would go out of bounds on the m_pData array and thus generate an error. A
better way would be the following:

/* Example 4 - Good */
class Data
{
private:
short * m_pData;
short m_sMaxData;
pubTic:
Data (void);
GetMember (unsigned long dwElement);
[* o */
}
Data::Data (void)
{
m_pData = new short [10];
m_sMaxData = 10;
}
short * GetMember (unsigned long dwElement)
{
if (dwElement <= m_sMaxData)
{
return &m_pData [dwElement];
}
else
{
return NULL;
}
}

This way, the programmer would always have to go through Data: :GetMember() to
get access to m_pData, thus preventing out of bounds errors.

Some Basic Techniques 287

sy = [—= LI = —1Lr],

Example 5: Private
Versus Public, the Second Case

The second case of the private versus public debate is that some encapsulation
classes should have their members’ public.

/* Example 5 - Bad */
class Vector3

{
private:

float X;

float Y;

float Z;

/* . */

void SetX (float X);
void SetY (float Y);
void SetZ (float Z);
float GetX (void);
float GetY (void);
float GetZ (void);
s

As you can imagine, this vector class will be a bit difficult to use since every time
you want to change one of its members (and you usually change them a lot), you
need to add the overhead of using a function for it. A better solution would be to
make the members public like so:

/* Example 5 - Good */
class Vector3

{
pubTic:

float X;

float Y;

float Z;

private:

/* . %/
s

288 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

This way, you could access any vector member by using the name of the vector and
access member like so:

Vector?2 Velocity;
Velocity.X = 10.0;

Modules and
Multiple Files

Being able to construct reusable modules is one of the hardest, but most rewarding
tasks in software development.

A module is usually a collection of routines, classes, variables, interfaces, structures,
and so on that relate to some part of the program. Modules come in all shapes and
sizes, it may be an image module or a sound module. Producing good and solid
modules makes them able to be reused in other projects, which will save you devel-
opment time, and they are easy to work with and independent.

Creating Modules with C++

One of the main advantages of C++ is its object-oriented programming methodol-
ogy, which makes it easy to create modules. If you remember from earlier, C++ pro-
vides a way to use various files in one project. You will use this functionality and
Visual C++ to create independent, reusable modules.

The first thing to do when creating a module is to define its functionality. When
this is done, you should divide the module in sections, which will be converted to
final usable classes. The conjunction of all these classes will be the module you
want.

Why Make Something a Module?

The main objective, as far as you are concerned, is to make code that is reusable.
There are a few other things such information hiding, modularity, or code cohe-
sion that makes modules a good programming technique. I will focus mainly on
the reusable proprieties of modules.

When you have a section of your code dedicated entirely to something, like graph-
ics, which you know you can use in other projects, you should make a module out

Naming Conventions 289

sy = [—= LI = —1Lr],

of it. In Parts II and III, you will be building modules for just about everything you
do: graphics, sound, input, math. If you are unsure whether you should take the
little extra effort and develop a module for anything you are developing, try the
following checklist:

= Can the code you are developing be used in other projects?

= Is the code independent?

= Will other people use your code?

= Can you say that the code you are developing a functional description can be
stated in a single phrase?

® Is the code cohesive?
= Does the code provide a set of complete operations to work with?
= Does the code provide information hiding?

If you have answered yes to at least two of the preceding questions, then you should
think of creating a module out of your code.

Naming Conventions

Properly naming your variables and functions is a very important step if you plan to
let others use your code, or even if you don’t, it is still a good skill to gain. If you
develop a routine with cryptic variable names, and then look at it six months later,
you will have a hard job trying to figure out what each variable is used for.

Function Naming
Function names should be clear, to the point (neither too long nor too short), and

explain what the functions do.

A quick way to know whether you are using correct function names is to check the
following list:

= |s the name of the function clear?

® Does it explain what the function does?

® s it easy to read?

® Is it the correct length (not too short or too long)?

= Does it use natural language to describe what it does?

290 9. Basic Software Architgiﬁi:i_.—if_é_':. = e

If you have answered no to just one of
the questions, then you should revise NOTE
why you aren’t doing the suggested.

The first example presents another
Here is a list of examples of bad nam- aspect when building functions. Each
ing/good naming: function should do one significant
thing. In the first example, you

FormatSavePrintGameData / ProcessGameData should have three funciions YAt for-

DoStuff / RenderObject matted, saved, and printed the game

SvemDt / SaveGameData data, respectively, and then another
function that would call the main
three functions.This makes the code
clear, consistent, and modular.

- BN TN NA
Variable Names
Variable naming should follow the same rules as function naming. Clear, descrip-
tive, and average in size.

If you want to know whether you are naming your variables correctly, check the fol-
lowing list, to which your answers should be yes:

m [s the name of the variable clear?

= Does it explain what data it holds?

® Is it descriptive?

® Does it indicated what type of data it holds?

® [s it in natural language?
Here are some bad name/good name examples:

i / IDLoop
x / xPosition
temp / tempName

Identification

When dealing with big routines and modules, knowing which type the variables are
1S a must.

You don’t want to get caught in line 3423 and have to return to the first line of the
file to identify the variable as a short or a float, do you?

Naming Conventions 291

sy = [—= LI = —1Lr],

A while ago, a man named Charles Simonyi, developed a naming scheme for vari-
ables to be used in Microsoft. This system was named Hungarian notation due to
the author being, of course, Hungarian.

Table 9.1 shows the Hungarian notation, which has been used by many companies
and as base to many other in-house created ones.

TABLE 9.1 Hungarian Notation

Prefix Description Type Example
b Boolean bool bRunning
by Byte unsigned char byLives
S Short integer short sVelocity
W Word unsigned short bMoney
1 Long integer Tong 1FTags
dw Double word unsigned Tong dwHighScore
f Single precision floating float fPI
point
d Double precision floating double dCosPi
point
D Pointer type * plmage
Sz Null terminated string char */ char [] szTitle
C Constant const cWeightToPounds
h Handle HWND hMainWindow
I Interface Interface IDirectInput8
C Class Class CWindow
m_ Member of type m_bGameRunning

Only the most used notations are shown.

292 9. Basic Software Architecture

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Where Common
Sense Beats Design

Sometimes, good common sense beats the rules. A good example of this is nota-
tion. If you have a variable that is declared as float fData and is used hundreds of
times during the program, if for some reason you need to change it to a double,
you would have to change all the references to fData to dData.

In the end, you should decide what works better for you, if it is the predefined
rules, use them; if it isn’t, use your own rules. The power to decide is yours.

The Design Usead
in This Book

During the rest of the book, you will use a hybrid mix of all the techniques shown
before and a few of your own.

The first thing to define is the design approach. You will use a mix of both top
down and bottom up to produce a feasibly way to design your code.

By using a bottom up approach to define the modules, and then develop the mod-
ules top down, you can use the best of both approaches.

All the code that follows this chapter for your Mirus library will be presented in a
class definition, and then each of the relevant methods will be developed, as in the
following example:

1 /* BaseVector.h */

2: class BaseVector

30

4. float m_afComponents;
5: public:

6: BaseVector (void);

7: /% o %/

8: void Normalize (void);

9

NOTE

YL This class uses math.h
10: }; header file.

Summary 293

sy = [—= LI = —1Lr],

This would tell you to create a file named BaseVector.h (or if it already existed, to
add to it) that includes the math.h header file and that class.

If there isn’t any explanation on constructors or destructors or any accessing meth-
ods like in the Get/Set family, it would mean that they are only used to initialize all
the members to zero or NULL or retrieve/set the values, and they should be imple-
mented by you, which isn’t hard.

After this, each method that needs explanation is presented as follows:

1: /* BaseVector.cpp */

2: void BaseVector::Normalize (void)
3:

4. /* Normalize vector here */

5

6

/% */
}

This would tell you to create a source file (or add to the existing one) with the
function definition. Each source file should include the corresponding header file,
in this case BaseVector.h.

Also, after every module or method is shown, it contains an explanation on what is
happening.

Last, I will specify the code notation. You will use a hybrid of Hungarian notation
and your own. See Table 9.2 for a complete description.

Summary

Even if this was a small chapter, a lot of important information was covered.
Software design and architecture are very important topics to learn, and you will
gradually learn to love them.

The concepts here are just a tip of the iceberg. You should have enough informa-
tion to write clear and solid code, but you should always be on the look out for new
techniques, rules, and notations that arise and check whether your code can bene-
fit from them.

The remainder of the chapters use most of the techniques described here to pro-
duce the final modules or software, so make sure you understood what is happen-
ing before proceeding.

294 = =

Basic Software Architecture

1[T——q__j‘1———r———7555551__r“‘1[L—ﬂ_;—~ L —— 5

TABLE 9.2 Your Code Notation

Prefix
b
;

ui

Sz

<+ =

Description

Boolean
Any integer

Any unsigned integer

Any floating point
Pointer

Array

Null terminated string
character (letter)
Handle

Template type
Interface

Class

Class type
Reference

Member of

Type
bool

int, short, Tong

unsigned short,
unsigned Tong

float/doubTe
type *

type [1

char */ char []
char

HWND
template
Interface
Class

Class

type &

type

Example

bRunning
iTime

uiEnergy

fPI

pImage
aComponents
szTitle
clLetter
hMainWindow
tVectorComponent
IDirectInput8
CWindow
m_kWindow
rkVector

m_bGameRunning

Ouestions and Answers

Q: Why shouldn’t you write code without a plan?

A: Like building a house, if you don’t have a plan and just start building what
you think you want, you end up with a post modern house which is either good

or safe. Developing software is done the same way, either you plan it or it will even-

tually fall.

Exercises 295

sy = [—= LI = —1Lr],

Q: Should I always play by the rules?

A: Some rules were made with a specific job in mind, and even if they have suited
some projects very well, they can be disastrous to your own. You should always see if
your code would benefit from using any of the rules you try to use.

Exercises

1. Define the top down approach.

2. Define the bottom up approach.

3. Why should you create a module?

4. Try to name the following variables according to Hungarian notation:

int Time;

char * Name;
LPVOID Pointer;
MSG WindowMessage;
HINSTANCE App;

This page intentionally left blank

PART TWO

DJUINDOWS
FPROGRANMING

e e SRR oM
15 ﬂjﬁ — e T [~

10 Designing Your Game Library: Mirus
11 Beginning Windows Programming
12 Introduction to DirectX

13 DirectX Graphics

14 Directinput

15 DirectSound

—Ll_J_I—._—"'—*— v E_.,__;., = ‘ ‘:.‘—H—fl—r‘—l_‘—'_—‘_'—‘-l_

L .IJL'J—"_‘—| ?'—q =L 1 —l_.—'_\—lﬂ "——'l_l_’_l{ ----- A % l_rA’JLL_l_

CHAPTER 10

DESIGNING
YouRrR GAmME
LI ERARYa=

M RUsS

300 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

I o have a game library that is easy to use but complete and powerful, you first
need to design it correctly.

In this chapter you will design the library that you develop during the remainder of
this part of the book. Figure 10.1 shows the Mirus library.

General Description

Mirus is a game library specifically designed to use with Windows and DirectX. It
uses various wrapper classes for DirectX to make developing games easier, and it
adds functionality to the base of DirectX.

Mirus was created for the following reasons:

® To relieve the programmer from having to deal with the inner workings of
DirectX, making the game code lighter and more understandable.

® To be reused in various projects.

= To be both easy to understand and modify.

Figure 10.1
‘ Code ‘ Mirus overview.
Jitiiights

Helper Component 301

Mirus Components

Mirus is divided into five separate components that can be used interchangeably.
The following is a list of the components:

= Helper Component. Contains helper classes for the other components to
use.

= Window Component. Deals with the creation and maintenance of the win-
dowing part of the game.

= Graphics Component. Deals with DirectX Graphics and all graphics-related
functionality.

= Sound Component. Deals with DirectX Audio and all sound-related function-
ality.

= Input Component. Deals with Directlnput and all inputrelated functionality.

Except for the Helper Component, all the other components can be used sepa-
rately, but the Mirus works best when they are all used together.

Helper Component

The Helper Component has only a few variable type definitions and a class,
mrTimer, that is used to perform time calculations in Mirus.

You will use the mrError.h file for all your error definitions, but this will be devel-
oped as the library is developed.

You use a few variable type definitions to
enable you to know the exact size of
each variable you are declaring and to
make it easier to port to another system.

NOTE
One of the most problematic
aspects of programming is that

sometimes what looks very good in

mrTimer can get the current date and
time, and also measures intervals of

time with the minimum amount of design, doesn’t look right in code.
error possible (which is accomplished You have specified a list of methods
by the hardware timer as you will see of the class, but at any time there
later). may be some changes, such as

adding or removing methods to
make the code easier and simpler.

The important methods of this class are
Update and GetDelta.

[1 [1

302 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Window Component

The Window component is made of a single class, with the option to improve it
later, which will encapsulate all the window management of Mirus.

mriindow can create a window and manage it the simplest way possible. A desired
scenario would be something like the following:

mriWindow Window;
Window.Create ();
Window.Run ();

All the necessary workings of the Win32 API for window management will be han-
dled by this class, but leaving the option of returning a window handle to enable
the user to do whatever he likes with the window.

Here are the most important methods of mrilindow:

Create

WndProc

Run
MessageHandler
Frame

Graphics Component

This is probably the component that more people are interested in. The Graphics
component includes many features, such as setting the display mode, displaying
textures, showing objects, and so on.

Several classes are in this component, such as these:

® mrScreen, which is responsible for setting the screen modes and maintenance
functions, such as clearing the screen or presenting the information to the
screen.

® mrRGBAImage, which is an arbitrary software 32-bit image that is used to pro-
vide a simple interface for mrSurface and mrTexture and image files.

= mrSurface, which is an arbitrary hardware-accelerated variant bit image that
can be copied to the screen.

® mrTexture, which is a power of two sized hardware-accelerated variant bit
image that can me mapped to polygons.

Graphics Component 303

sy = [—= LI = —1Lr],

= mrSprite, which is a static image made of two polygons (quad) that is tex-
tured using an mrTexture.

Except for mrRGBAImage, all the other classes rely on DirectX Graphics for hardware
acceleration.

You will see a few more graphics-related classes when you read about 2D images
later in the book.

mrscreean

The mrScreen class is responsible for dealing with all screen-related operations, such
as clearing the screen to a certain color or presenting the image in the back buffer.

It encapsulates all the needed DirectX Graphics functionality, so it resembles the
DirectX Graphics object (which I will talk about later). When you need to create a
surface or texture you use this class to return a valid pointer to a surface or texture
that you can then use.

mrScreen is a singleton class. This will make it easier to get access of the Direct3D
objects when you need to create surfaces (mrSurface) and textures (mrTexture).
Destruction of those is left to the user.

Following is a list of the class methods:

Init

SetModeClear
StartFrame (void);
EndFrame (void);
DrawlLine
DrawRectangle
DrawCircle
IsModeSupported
ShowCursor

mrRGBAImage

Being one of the core components of Mirus, mrRGBAImage is the most basic form of
representing an image in Mirus.

Instead of creating methods in each class that needs a basic image, an independent
class is created, which the other classes use to store the raw image. Keeping this
design will lead to code efficiency and a smaller code base.

304 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

The class methods are the following:

operator =
LoadFromBitmap
LoadFromTarga
void SetColorKey

mrSurface

An mrSurface object is a hardware-accelerated image, which can reside either in
video or system memory of any size (depending on system support), and can be
copied to the screen without much problem, but unfortunately for 2D program-
mers, it can’t have color keying or alpha.

A surface class was created to be used with large still images, like background
images, to avoid the need for tiling that textures have.

mrSurface methods are as follows:

Create
Update
Render

mr lexture

The mrTexture is a class that can’t be copied to the screen directly but must be
mapped to polygons that can be rendered, as you will see in the next chapter.

The mrTexture image has two limitations from an mrSurface image, such as its size
must be a power of two (2, 4, 8, 16, 32, 64, 128, and so on) and must be squared
(even though this is mostly a hardware limitation and some hardware can render
irregular-sized textures).

The texture class methods are the following:

Create
Update

mrTemplateSet

A template set is nothing more than a collection of images in a texture. You will be
using template sets for animation later. For now, think of a template set as a grid,
with each grid cell containing an image.

Graphics Component 305

sy = [—= LI = —1Lr],

mrTemplateSet methods are the following:

Create
GetUV
SetActiveTexture

mrAnimation

The mrAnimation is a set of coordinates inside a template set that define an anima-
tion. The most important methods are the following:

Create
Update
Render

mrABO

mrABO is a set of animations of type mrAnimation with both size, position and direc-
tion. It is the representation of animated objects in the screen.

mrABO should be as easy to load and render as possible. A desired scenario would be
as follows:

mrABO Abo;

Abo.LoadFromFile ("Abo.txt");
Abo.SetPosition (10,10);
Abo.SetSize (25,25);
Abo.Render ()

mrAbo methods are as follows:

Create

Update

Render
LoadFromFile
Rotate
Collide
ContainsPoint

306 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Sound Component

The sound component isn’t difficult to develop or use. Divided into two separate
components, one for playing files and the other for playing music CDs, it features
two simple classes of direct use.

mrSsoundPlayer

The mrSoundPlayer is based on DirectX Audio components and encapsulates all the
necessary methods to play wave or midi (or any other supported types) files. It
should be easily initialized.

This class is a singleton, so it is easier to access anywhere in the game, such as in
game objects or the main menu.

A desired usage would be the following:
/* Initialization */

mrSoundPlayer Player;

Player->LoadSound ("Sound.wav");

/* Somewhere in the game */
Player::GetSingleton->PlaySound ("Sound.wav")

Of course, other methods that are useful are as follows:

LoadFromFile
SetVoTlume
Play

Stop

mrCDPlayer

The mrCDPTayer is a simple CD player that enables you to play any track of a CD that
is inserted using the Windows API.

This class will use the MCI API to play the CDs. MCI is a Windows API that enables
you to use the default codecs (software that reads or writes files of certain types,
usually multimedia files) to play the video or audio files.

This class is also a singleton that allows the use of the same instance of the class
in the menus or the game itself without the need to keep unnecessary instances
created.

Input Component 307

sy = [—= LI = —1Lr],

The necessary methods are as follows:

Eject
Play
Stop
Update

Input Component

The input will be a little more complicated than the previous components and will
be made of two distinctive types of classes, the devices classes (keyboard, mouse,
and joystick) and an action mapper class that will make working with the input
devices easier. The input component’s only method is init.

mrKeyboard

The mrKeyboard class is responsible for handling and reporting all the keyboard
events to you and also enables you to query the keyboard state at any time.

Its methods are as follows:
Init
Update

IsButtonDown
IsButtonUp

mrMouse

The mrMouse, similar to the mrkeyboard class handles and reports all the mouse
events to you and enables you to query the mouse state at any time.

Its methods are as follows:

Init

Update
IsButtonDown
IsButtonUp
GetXAxis
GetYAxis
Clear

308 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

mrJoystick

mrdoystick is similar to the other device classes and is responsible for handling and
reporting all the joystick events to you and enabling you to query its state at any
time

Its methods are as follows:

Init

Update
IsButtonDown
IsButtonUp
GetXAxis
GetYAxis

Building the Help Component

The help component is made of the types file, the mrTimer, and the error file.

Declaring the Types

The first thing you will create is the data types file, mrDataTypes.h. Look at the fol-
lowing code:

1 /* 'mrDatatypes.h' */

2

3 /* Include this file only once */

4: {ffpragma once

5:

6: /* Basic type definitions */

7: typedef char mrint8;
8: typedef unsigned char mrUInt8;
9: typedef short mrintl6;
10: typedef unsigned short mrUIntl6;
11: typedef long mrint32;
12: typedef unsigned long mrUInt32;
13: typedef int mrint;
14: typedef unsigned int mrUInt;

You first declare all the nonfloating-point types. These are just the basic C++ types
but typedefed to tell you whether they are unsigned or not, and their sizes in bits.

Building the Help Component 309

sy = [—= LI = —1Lr],

Next you have the floating-point types:

16: typedef float mrReal32;
17: typedef doubTle mrReal64;

These are nothing more that the C++ floating-point types typedefed to know the
size of them.

19: /* Composed definitions */
20: enum mrBool132

21: {

22: mrFalse =0,

23: mrTrue =1

24

25: mrBool32_Force32 = OxFFFFFFFF
26: };

This one is a little bit trickier. mrBoo132 is an enumeration that defines mrfalse as
zero (0) and mrTrue as one (1). You have done this to make sure that your Boolean
type always returns either zero or one.

The mrBoo132_Force32 ensures that the mrBoo132 is a 32-bit type, as you declare it as
0xFFFFFFFF, which is the higher value you can have for a 32-bit value.

This header file will be included in just about every Mirus file from now on.

mrlimer

The mrTimer class is defined as:

/* 'mrDatatypes.h' */

1
2
3: /* Mirus base types header */
4: finclude "mrDatatypes.h"
5: /* Windows header file */
6: #include <windows.h>
7: /* Time header file */
8: #include <time.h>
9:
10: /* Include this file only once */
11: fpragma once
12:
13: /* Mirus timer class */
14: class mrTimer

310

e e S

15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34
35
36:
37:
38:
39:
40:
41:

{

protected:
/* Hardware timer variables */

10.

Designing Your Game Library: Mirus

LARGE_INTEGER m_iFrequency;
LARGE_INTEGER m_iLastQuery;
LARGE_INTEGER m_iDelta;

/* Time and date variables */

tm *

pubTic:

/* Constructor / Destructor */

m_pkTime;

mrTimer (void);

~mrTimer

/* Update the time variables */

(void);

void Update (void);

/* Return the timer information */

mrReal32
mrUInt32
mrUInt32
mrUInt32
mrUInt32
mrUInt32
mrUInt32

s

GetDelta (void);
GetSeconds (void);
GetMinutes (void);
GetHours (void);
GetDay (void);
GetMonth (void);
GetYear (void);

LT

s

:::r__Ezgj__r_____JﬂL”J——1;L__

Before proceeding to the explanation of this class, let me introduce to you the type

LARGE_INTEGER.
LARGE_INTEGER is a Visual C++ type (not CG++) that is defined as:

typedef union _LARGE_INTEGER

{

struct

{

}

DWORD LowPart;
LONG HighPart;

LONGLONG QuadPart;

}

LARGE_INTEGER;

Building the Help Component 3an

J—Llrrﬂ—_.ﬁ [—= LI = —1Lr],

This union can be accessed by using the structure with the low part (last 32 bits
from left to right) or the high part (first 32 bits from left to right) of the number,
or by using the LONGLONG type, which is a Visual C++ specific type of 64 bits. You will
be using the QuadPart member because Visual C++
enables you to use a LONGLONG type like any other

normal integer. NOTE

Now for your class, you first declare three In Visual C++, DHORD is the
LARGE_INTEGERs (lines 18 through 20). The first same as unsigned long,and
one, m_iFrequency, is the frequency (number of -~ LONG is the same as long.
counts per second) of the hardware timer; the
next one, m_ilLastQuery, is the value of the counter
when the last call to Update has occurred; and m_iDelta is the difference between
the last call to Update and the current call to Update.

=

Next you declare a pointer to a structure of type tm, m_pkTime. You will keep the sys-
tem time and date here.

Then you have the default constructor and destructor (nothing new). You also
have the Update methods, which will update both the hardware timer and the
time/date structure.

Finally you have methods to return the difference of time in seconds of the hard-
ware timer, GetDelta, and various functions to return the system time and date.

In the source file, the first thing you need to do is to include the mrTimer.h
header file:

/* 'mrWindows.cpp' */

1
2
3: /* Complement header file */

4: finclude "mrTimer.h"

5:

6 /* Default constructor */

7: mrTimer::mrTimer (void)

8: {

9 /* Get the hardware clock frequency and current count */
10: QueryPerformanceFrequency (&m_iFrequency);

11: Update ();

12: }

Your constructor calls QueryPerformancefFrequency that returns the hardware timer
count frequency and calls the class method Update.

312 10. Designing Your Game Lil:lrarg:' Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

QueryPerformanceFrequency is used to return the number of counts that the hard-
ware timer does per second—that is, the number of “ticks” that the timer evaluates
per second. QueryPerformancefFrequency is defined as follows:

BOOL QueryPerformanceFrequency (
LARGE_INTEGER * 1pFrequency
)

This takes as argument a pointer to a type LARGE_INTEGER union, which will hold the
frequency of the timer.

If no hardware timer is installed, QueryPerformanceFrequency returns zero; otherwise,
it returns any nonzero value.

14:. /* Default destructor */

15: mrTimer::~mrTimer (void) NOTE

16: { BOOL in Visual C++ is the
17: m_iFrequency.QuadPart = 0; same as bool.

18: m_ilastQuery.QuadPart = 0;

19: }
In the destructor you just set the hardware counters to zero.
Next you have the Update function, which is the core of your timer.

21: /* Update timer */
22: void mrTimer::Update (void)

23: {

24: LARGE_INTEGER kTempTimer;

25: time_t iTempTimeDate;

26:

27: /* Get current timer information and calculate difference */

28: QueryPerformanceCounter (&kTempTimer);
29: m_iDelta.QuadPart = kTempTimer.QuadPart - m_ilLastQuery.QuadPart;

30:

31: /* Save current timer information */

32: m_ilastQuery.QuadPart = kTempTimer.QuadPart;
33:

34: /* Get current time and date */

35: time (&iTempTimeDate);

36: m_pkTime = Tocaltime (&iTempTimeDate);
37: }

= _ “I'EI.uilding the Help Component 313

You start by declaring two temporary variables (lines 24 and 25). You then use
QueryPerformanceCounter (line 28) to get the count number of the hardware timer.
QueryPerformanceCounter is defined as:

BOOL QueryPerformanceCounter (
LARGE_INTEGER * TpPerformanceCount
);

This takes as parameter a pointer to a LARGE_INTEGER that will store the current hard-
ware timer count. This function also returns zero if the hardware timer isn’t available.

After you have the current timer count, you calculate the difference between the last
call to Update and this one (line 29), and you save the current timer count (line 32).

After that, you call the time function to get the current system time and date and
convert it to a tm structure using lTocaltime.

And there you have it; the Update function is all done. Now you just need to
develop the Get methods

39: /* Get delta time from last update */
40: mrReal32 mrTimer::GetDelta (void)

41: {

42 /* Convert to float and calculate delta in seconds */
43: return (mrReal32)(m_iDelta.QuadPart) /

44 (mrReal32)(m_iFrequency.QuadPart);

45: '}

The GetDelta method isn’t hard, but there is a catch”: You need to convert the
QuadParts of the m_iDelta and m_iFrequency values to get the elapsed time in sec-
onds. You do this using C-style casting.

You divide the m_iDelta by m_iFrequency to
get the difference in seconds; as an exam- NOTE

ple think of the following problem: Even if this timer is very accurate,

there is still a little incoherency in
the values because it takes time to
call the functions (namely function

If there are 23,454 timer counts per sec-
ond (frequency), how many seconds is
429 timer counts (delta)? The solution is
obvious, 429/23454, which is 0.18291.
This is what you do when you divide
m_iDelta by m_iFrequency.

overload time), which can change
the values returned by the timer.
You don’t need to worry, however,
because they are usually in the
0.00001 seconds or less range.

3149 10. Designing Your EameLl

rary:

= =]

e e S

T L

The next set of functions returns the system time and date members of m_pkDate so

there is no need for explanation:

47: /* Get system seconds */

48: mrUInt32 mrTimer::GetSeconds (void)
49: {

50: return m_pkTime->tm_sec;

51: }

52:

53: /* Get system minutes */

54: mrUInt32 mrTimer::GetMinutes (void)
55: {

56: return m_pkTime->tm_min;

57: }

58:

59: /* Get system hours */

60: mrUInt32 mrTimer::GetHours (void)
61: {

62: return m_pkTime->tm_hour;

63: }

64:

65: /* Get system day */

66: mrUInt32 mrTimer::GetDay (void)
67: |

68: return m_pkTime->tm_mday;

69: }

70:

71: /* Get system month */

72: mrUInt32 mrTimer::GetMonth (void)
73: |

74: return m_pkTime->tm_mon;

75: }

76:

77: /* Get system year */

78: mrUInt32 mrTimer::GetYear (void)
79: |

80: return m_pkTime->tm_year;

81: }

And that is it! You have now a hardware

timer class ready to be used in your games.

NOTE

Almost every recent (and not so
recent) computer has a built-in
hardware timer. mrTimer was cre-
ated with the assumption that the
target computer has one.To have

a reliable timer class, you should
include a check to
QueryPerformanceCounter in the
constructor, and if it fails, create a
timer of your own using normal
Win32 API functions.

Building the Help Component 315

sy = [—= LI = —1Lr],

How to Create the Error File

Creating the error file, mrError.h isn’t hard. The very basic file is as follows:

/* mrError.h' */

1

2

3 /* Include this file only once */
4: {Jfpragma once
5.

6

7

/* Error codes */
. enum mrError3?2

8: {

9: mrNoError =0,
10:
11: mrError32_Force3?2 = OxFFFFFFFF
12: };

This is basically enumeration mrError32 with mrNoError (0) defined. When a func-
tion succeeds, the constant mrNoError is returned.

Here’s how to construct the rest of the error codes. Whenever you see some func-
tion having a return type mrError32, and within the code there is a line like this:

return mrErrorSomething;

Where Something is usually a word or a small abbreviated phrase, it means an error
occurred and that you should add the mrErrorSomething code to your enumeration
next to the last error you added, or if it is the first time, after mrNoError like this:

enum mrError3?2

{

mrNoError =0,
mrErrorSomethingl,

mrErrorSomething?2,

/* Wx

mrError32_Force32 = OxFFFFFFFF
s

Easy, no?

316 10. Designing Your Game Library: Mirus

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

How to Use Mirus

To use Mirus in other projects, you need to copy all the Mirus files to the project’s
directory and include only the header files you want.

At the end of the book, you should create a file, probably named Mirus.h, which
has all the needed headers for Mirus to work efficiently by only including that
header in the main project.

Even though there are better methods to use Mirus, such as creating a static library
for linking, this step is left for you to implement.

Summary

In this chapter you have completed one of the most important aspects of Mirus
development—its design.

By having the library briefly designed, it will be easier to keep focus on what is
important and what isn’t, and how the components work, which will save you a lot
of time when you are doing the development.

You have also created the most accurate timer using the hardware timer to calcu-
late the time it takes to draw a frame so you can use it in your games.

Ouestions and Answers

Q: Why should I make some of the components singletons?

A: When you create a game, sometimes you need to create a Mirus object (like
mrAB0) from a class, which has no access to the manager (for example, mrScreen). By
making these classes singletons, you can access them anywhere in your code.

Q: Why should I create a mrRGBAImage and not implement the loading routines
inside the mrSurface and mrTexture classes?

A: By creating an independent class, you can modify the code for loading the files
as you wish in only one place (like adding support for other file formats), and you
don’t need to worry about the other classes.

T W g BN "—F_' -[l_l : o = —J]_I"__‘_'_[_._- - ==

J'“ et 1|=£’——| L = [|_-|__.|_|—‘ . I_L_[J : I:'—'JLL_I

CHAPTER I

EEGINNING
DIJUITNDOWS
FPROGRANMING

318 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Windows is here, and is here to stay. Knowing how to create and show windows
and know the basics of window use is crucial to any DirectX developer.

In this chapter, I will explain the basics of window creation and manipulation and
take a look at some of the more popular functions related to Windows program-
ming. In the end, you will build a reusable window framework to use in the rest of
your games.

History of Windows

Windows has come a long way since its first release. From Windows 1.0 to the more
recent Windows XP, Windows has grown from a simple user interface with drop-
down menus to one of the most complex pieces of software ever created.

The first incarnations of Windows were as hard to program as they were to work
with. The entire development structure was modified in Windows 3.1, which was a
blessing to all Windows programmers.

In 1995, Microsoft released its 32-bit system, Windows 95. This was when Microsoft
really conquered the market (and the world for that matter). Microsoft created a
system that was user friendly, developer friendly, powerful, and nice to look at. At
this time, Microsoft had the operating system for most applications, but it was not
very friendly for games. About a year later, Microsoft introduced the Game SDK
(later renamed DirectX) to try to get developers to make games for this new system.

With the arrival of Windows 98 (and a much better version of DirectX), Microsoft
developed the perfect solution both for applications and games. Being a true
32-bit system, it guaranteed a fast, reliable system for games. It still looked and
felt like Windows 95, but under the hood, Windows 98 was very different from its
predecessor.

Alongside Windows 95 and 98, Microsoft also developed Windows NT (currently
in its fifth incarnation named Windows 2000), which was a reliable system for net-
works and applications, but very poor in terms of performance for games. It wasn’t

_ l.ntrnll:luction to Windows Programming 319

sy = [—= LI —— = —1Lr],

until Windows NT 5 that Microsoft put a real effort in making a game friendly NT
system.

Windows Millennium Edition (Me) has great support for both games and normal
applications. It is user friendly and compatible with just about any hardware that
exists. Microsoft has recently released Windows XP, which has the stability of
Windows 2000 and the easy use of Windows 98.

Overall, Windows started by being a simple user interface system to a complete oper-
ating system, which is considered one of the most complex systems ever created.

Introduction to Windows
Programming

I will focus compatibility with Windows 98 and
newer versions mainly because of its true 32-bit

capabilities, but that doesn’t mean that the NOTE

code here doesn’t work with Windows 95. This type of support for older
Windows 95 had a lot of 16-bit legacy code that versions of systems is called
made it unstable and buggy, and Windows 98 legacy support. It means that

applications or code devel-
oped for older systems will
work in newer ones.

doesn’t have those problems. Also, code that
works in Windows 98 should work perfectly
with newer releases of Windows because
Microsoft made an effort to ensure compatibil-
ity with programs released in previous systems.

You should take a few things into account when developing games (or any kind
of software) for Windows. Some you really don’t need to worry about and others
you do.

Windows

Windows applications usually work with windows (try to make sense out of that).
Windows (not the operating system but the windowed applications) are made of
several components. Take a look at Figure 11.1 for the most common parts of a
window.

320 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Figure 11.1
Close Box (&) . .
A typical window has
Maximize Box {d) .
control Box (a) several different
Minimize Box (c)
window Title (b) components.
SEX
4|Menu G File
Client Area (h)
Border {f)

Figure 11.1 shows a typical window using the most commonly needed components
but this doesn’t mean you need them all. Here’s a brief description of each:

a) This icon, when clicked, shows a system menu with the common window
functions, such as Move, Size, Minimize, and so on.

b) This bar shows the window title.

¢) This box minimizes the window to the taskbar.

d) This box maximizes the window to the size of the screen (when possible).

e) This box closes/exits the application.

f) This border is used for resizing and to show a visible division between the
window and other windows or the desktop.

g) The menu is usually used to give some extra commands to the user in the
form of a collection of menus and submenus.

h) This is what you are interested in—the client area. Here is where you will
draw what you need.

=
-

qductfun to Windows Programming 321

Multitasking

Windows is a multitasking system. It can run several applications at the same time.
Windows supports two types of multitasking, process-based and thread-based.
Figure 11.2 shows an example of multitasking.

Even if you don’t need to deal with this issue yourself, you should ensure that your
games will not have exclusive access to the CPU. You can’t expect to have 100%
processing power from the system and should expect that from the user’s system.

Figure 11.2

| Multitasking in a

¥
[

| Program start

single program.

| Progratn end |

NOTE

Unless a computer has multiple processors, a system can’t
truly do two things at the same time.Windows, however, emu-
lates multitasking by running each application code a bit at a
time, giving the impression that different things are happening

at the same time because a computer is so fast. For example,
if you have a program that does ten calculations each cycle,
and another that does ten calculations also, Windows manages
to do a calculation in one application, one in another, and then
another calculation in the first application, and so on until all
calculations of both applications have been completed.

322 11. Beginning Windows Prugramrﬁing

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Windows Has Its Own API

Unlike the console programs you have been developing, you don’t have any direct
control over how your Windows applications work. You have an Application
Programming Interface (API) that provides you control on how windows are
shown, manipulated, twisted, and cooked. (Fried windows, anyone?)

You will be using the Win32 API, which is the 32-bit version of the Windows API.
The old API used to develop 16-bit applications is the Winl6 API. The newer
API has hundreds of functions you can use to get control over your application.

You will use this API exclusively to develop all the code during the rest of this chap-
ter and a few others.

Message DQueues

Windows has another big difference from the console applications you have been
developing: messages, or input queues. All things that happen in your program
(such as the mouse moving, the user press-

ing a key, aliens landing) are reported to

your application by a message. NOTE

In each cycle dedicated to your applica- A queue is a list of events, data, and
tion, you will see whether there is a mes- anything that works in “first in, first
sage in the queue. You will either chose out (FIFO)” priority. The first data to
to handle it or ignore it, as you will see get in the list is the first to get out.
when you learn more about the message

handler.

Visual C++ and
Windows Applications

When developing Windows applications, you don’t use the Win32 Console project
anymore. To be able to develop Windows applications, you now need to use the
Win32 Application project.

You should already know how to create a new project, but just in case, you need to
go to File, New, and select the Projects tab. Then choose the Win32 Application
and give the project a name.

Building the Windows Application 323

sy = [—= LI —— = —1Lr],

If you remember console applications, then you know that when you created a new
console project, you could define a couple of prestarter options to aid in creating
the project. Win32 Application project also has a few options to help you do this.
I'll leave it up to you to play with those options.

Now add a C++ source file to the project, and you are ready to start.

Building the
Windows Application

Developing a Windows has four main steps. These steps are illustrated in
Figure 11.3.

Figure 11.3

Building a Windows

Define and register a application.
window class

¥

Create the window

¥

Enter the message
loop

¥

Create the meszage
handler

324 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

I believe it is better to start by seeing the complete code for a Windows application
and then dissect it by relevant parts, so here it is:

/* '01 Main.cpp' */
: #include <windows.h>

1
2
3
4: /* Message handler prototype */

5: LRESULT CALLBACK WndProc (HWND hWindow, UINT iMessage,

6: WPARAM wParam, LPARAM 1Param);
7
8

/* "WinMain Vs. main" */
9: int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInst,
10: LPSTR TpCmdLine, int nShowCmd)
11: |
12: /* "The Window Class" */
13: WNDCLASS kWndClass;

14

15: /* 'Visual' properties */

16: kWndClass.hCursor = LoadCursor (NULL, IDC_ARROW);

17: kWndClass.hIcon = LoadIcon (NULL, IDI_APPLICATION);
18: kWndClass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
19:

20: /* System properties */

21: kWndClass.hInstance = hlnstance;

22: kWndClass.lpfnWndProc = WndProc;

23: kWndClass.lpszClassName = "01 Basic Window";

24:

25: /* Extra properties */

26: kWndClass.lpszMenuName = NULL;
27

28: kWndClass.cbClsExtra = NULL;

29: kWndClass.cbWndExtra = NULL;

30: kWndClass.style = NULL;
31:

32: /* Try to register class */
33: if (!RegisterClass (&kWndClass))
34: |

35: return -1;

36: |}

37:

Building the Windows Application 325
__JEr—jjrf1_____1_j£25__7::= r_____EL_J E:::__1__J___L—ﬂ_I——rH_ﬂrL__EEEEEE____L___F_L_JL_J_L_F

38: /* "The Window" */

39: HWND hWindow;

40: /* Create the window */

41: hWindow = CreateWindow ("0l Basic Window", "A Blank Window",

42 WS_OVERLAPPEDWINDOW | WS_VISIBLE, CW_USEDEFAULT,
43: CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

44 NULL, NULL, hInstance, NULL)

45:

46: /* "The Message Loop" */
47: MSG kMessage;

48: /* Enter the message Toop and deal with all messages sent to our
49: window */

50: while (GetMessage (&kMessage, hWindow, 0, 0))

51: |

52: TranslateMessage (&kMessage);

53: DispatchMessage (&kMessage);

54: }

55:

56: return 0;

57: }

58:

59: /* "The Message Handler" */

60: LRESULT CALLBACK WndProc (HWND hWindow, UINT iMessage,

61: WPARAM wParam, LPARAM 1Param)
62: {

63: switch (iMessage)

64: {

65: /* Close window */
66: case WM_CLOSE:
67: PostQuitMessage (0);

68: break;

69:

70: default:

71: return DefWindowProc (hWindow, iMessage, wParam, 1Param);
72: '}

73: return 0;

74: 1}

If all went well, you should see a window similar to the one in Figure 11.4.

326 11. Beginning Windows Prngramming =

ey tic L oo

Zimx| Figure 11.4

Your created window.

The first thing you do is include the windows.h header file (line 2). This header file
contains almost all the Win32API functions, structures, constants, and so on that
you will need to create Windows applications. After this is done, you declare your
message handler prototype WndProc (lines 5 and6). Don’t worry about this function
now because I discuss it later.

WinMain Versus MVain

WinMain (line 9) is the Windows equivalent to main for console applications. It uses a
different structure than main. First, the return type is an int. This doesn’t mean you
are forced to use an int, but you should. The second thing you have probably
noticed is that it looks like it returns two types, which isn’t true. WINAPI is a calling
convention, such as static or inline, as you have seen before but specific to
Windows applications.

Then there are the parameters. The

first parameter, HINSTANCE hInstance, is NOTE

the instance of the program. Think of it A handle is a pointer to a pointer,

as the ID of your application to the meaning that it points to an address
operating system. The second parame- inside a list. These are needed

ter isn’t used in the 32-bit versions of because Windows memory manager

Windows and will always be NULL. moves objects as it most suits it, so
you cannot access the memory nor-

mally without external help.

Building the Windows Application 327

sy = [—= LI —— = —1Lr],

The third parameter, LPSTR 1pCmdLine, is a string with the command-line arguments.
This works a bit differently from the console version. If you try to run a program
like this:

Executable.exe First Second
TpCmdLine will be a string like this:
"First Second"

So if you want to parse the command-line arguments, you do it the same way you
parse a normal string. The last parameter is how the window should be shown. This
parameter can take any of the following values shown in Table 11.1, which you will
be using later.

TaBLE I 1.1 Window State Passed to WinMain

Value Description

SW_HIDE Hides the window

SW_MINIMIZE Minimizes the window

SW_RESTORE Activates and displays the window in its original size
and position if it is minimized or maximized

SW_SHOW Activates and displays a window

SW_SHOWMAXIMIZED Activates and displays a window maximized

SW_SHOWMINIMIZED Activates and displays a window minimized

SW_SHOWMINNOACTIVE Activates and displays a window minimized and active

SW_SHOWNA Activates and displays a window active

SW_SHOWNOACTIVATE Activates and displays a window

SW_SHOWNORMAL Activates and displays the window in its original size

and position if it is minimized or maximized

328 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

Creating the Window

Creating the window can also be divided into two sections: defining a window class
and actually creating the window.

The Window (Class

The first step to defining the window class is declaring the variable like so:
WNDCLASS kWndCTlass;

This creates a variable you will use to specify the windows attributes. The WNDCLASS
structure has several members that you will use and it is defined as so:

typedef struct _WNDCLASS {
UINT style;
WNDPROC TpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hlIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR TpszMenuName;
LPCTSTR TpszClassName;
} WNDCLASS;

By order of appearance, here is an explanation of each of the structure fields.

style specifies the window class style. You won’t use it now, so set it to NULL. Then
there is 1pfnWndProc, which is a pointer to the window message handler that the win-
dow will call. Remember you declared a function prototype earlier? Well, this is
where you use it, so you assign it to this field.

After the window procedure comes two fields, cbC1sExtra and cbWndExtra, which are
used to specify the number of extra bytes to allocate after the window class struc-
ture and the window structure, respectively. You won’t use them, so set them to
zero.

Next, you have the instance field—hInstance. This is the instance of the application
where you create the window. You will use the hInstance parameter of WinMain for
this.

Building the Windows Application 329

sy = [—= LI —— = —1Lr],

The next field is the icon handle—hIcon. This field will specify the icon shown in
the title bar. You use the API function LoadIcon to load the icon, which is declared
like this:

HICON LoadIcon (HINSTANCE hInstance, LPCSTR 1pIconName);

This function, if successful, returns a handle to an icon, which you use in the win-
dow class field. Its parameters are the instance from where you want to load the
icon. Here you use NULL because you don’t have any icons in your application. By
using NULL as an instance, you can use a predefined icon. The second parameter is
a null terminated string specifying the name of the icon to load. You are using the
IDI_APPLICATION predefined icon in this case. Table 11.2 lists a few more icons you
can use.

Next is the cursor information—hCursor, which is the handle to the cursor you
want your window to have. You use the LoadCursor function similarly to how you
used LoadIcon.

HCURSOR LoadCursor (HINSTANCE hInstance, LPCTSTR 1pCursorName);

The first parameter is also the instance of your program, or NULL if you want to use
any of the predefined cursors, which you do. The second parameter is the cursor
name or a predefined icon value. You use IDC_ARROW, which is the normal arrow you
see all around Windows. Table 11.3 contains the predefined cursors you can use.

TABLE |11.2 Predefined Icons

Value Description
IDI_APPLICATION Default application icon
IDI_ERROR Error icon
IDI_INFORMATION Information icon
IDI_WARNING Warning icon
IDI_QUESTION Question icon

IDI_WINLOGO Windows logo icon

330

11. Beginning Windows Programming

TaBLE |1 1.3 Predefined Cursors

Value

IDC_APPSTARTING

IDC_ARROW
IDC_CROSS
IDC_HELP
IDC_IBEAM
IDC_NO
IDC_SIZEALL
IDC_SIZENESW
IDC_SIZENS
IDC_SIZENWSE
IDC_SIZEWE
IDC_UPARROW
IDC_WAIT

Description

Standard arrow with small hourglass

Standard arrow

Crosshair

Arrow and question mark

|-Beam

Slashed circle (prohibition)

Four-pointed arrow

Double-pointed arrow pointing northeast and southwest
Double-pointed arrow pointing north and south
Double-pointed arrow pointing northwest and southeast
Double-pointed arrow pointing west and east

Vertical arrow

Hourglass

Now there are only three more. The next one is the background style—

hbrBackGround. Here is where you specify the kind of background brush you want

your window to have. By using GetStockObject, you can use a predefined stock
object, or brush. It is defined as so:

HGDIOBJ GetStockObject (int fnObject);

This returns a handle to the object and takes as parameter the object type. Table

11.4 provides a complete list of brush objects you can use.

And your next field is the menu name—71pszMenuName. You won’t use a menu for

this window, so set it to NULL.

ﬁl_n—"l_”_l_‘L

Building the Windows Application 331

sy = [—= LI —— = —1Lr],

Table 11.4 Predefined Brushes

Value Description
BLACK_BRUSH Black brush

DKGRAY_BRUSH Dark gray brush
GRAY_BRUSH Gray brush

HOLLOW_BRUSH Hollow brush (transparent)
WHITE_BRUSH White brush

Last, but not least, the class name—1pszClassName. This is the name Windows will
use to refer to the class. When you create the window, you need to know it, and for
this example you use 01 Basic Window.

And you have your window class setup for registering. Now what? Register!!

In line 33 you try to register the class by using the function RegisterClass, which is
defined as so:

ATOM RegisterClass (CONST WNDCLASS *1pWndClass);

This function returns, if successful, an ATOM, which identifies the window class, or
zero if it failed. You won’t use the return type except for checking whether it was
successful, so you really don’t need to worry about it. Its only parameter is a
pointer to a window class, in your case &kWndClass. This function will register your
class for later use.

You also check whether you registered the window class correctly, and if not, just
quit the program, returning -1.

With this you finish the declaring and registering part of your window creation
process. If all was successful, you are ready to move to the actual creation of the
window.

332 11. Beginning Windows Prngrammmg

Creating the
Window NOTE

Just in case your memory is failing, a
handle is an address of a resource in
Windows.Windows manages the han-

You have now reached the point where
you create the actual window. The first
step (okay, maybe not a real step) to
creating a window is to declare a win-
dow handle, as follows:

dle itself so you don’t need to worry
how they are stored. Just remember
it will point to the resource you
HWND hWindow; —in\this case, the window.

After this is done, you can create your
window as shown in lines 41 through 44
using the following code:

hWindow = CreateWindow ("0l Basic Window", "A Blank Window",
WS_OVERLAPPEDWINDOW | WS_VISIBLE, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hInstance, NULL);

CreateWindow has a lot parameters, so start by looking at the function definition and
then go over the parameters one by one.

HWND CreateWindow (LPCTSTR TpClassName,
LPCTSTR TpWindowName,
WORD dwStyTle,
int x,
int y,
int nWidth,
int nHeight,

HWND hWndParent,
HMENU hMenu,
HANDLE hInstance,
LPVOID TpParam);

CreateWindow returns a handle to the created window if it was successful or NULL if it
wasn’t. The returned window handle will be used in almost any operation you try
to perform with the window.

So I’ll go over the parameters. The first one is the class name—1pClassName—from
where the window will take its properties. This name must be the name of a class
registered in your program. You use 01 Basic Window because it was the name of the
window class you registered.

Team-Fly®

Building the Windows Application 333

sy = [—= LI —— = —1Lr],

The second parameter is the window title—1pWindowName. This is the text that will
be shown, by default, in the window title bar (in your example, A Blank Window.)

You then have the window’s style—dwStyle. This parameter specifies how the win-
dow is shown. You are using WS_OVERLAPPEDWINDOW to create a normal window with all
the normal window components (except the menu) (refer to Figure 11.1). You also
use WS_VISIBLE to force the window to be visible on creation. You combine both the
styles using the OR operator. Table 11.5 shows some of the common window styles.

Most of the values in Table 11.5 and other windows style values can be used
together with the OR operator.

The next two parameters—x and y—are the position of the window in the screen.
You use CW_USEDEFAULT to allow Windows to choose the position.

In resemblance to the previous parameters, you have the width and height of the
window next—nWidth and nHeight. You also let Windows decide what values to use
by passing CW_USEDEFAULT.

Next, you have the window parent handle—hWndParent. You don’t make use of it, but
specify NULL, which tells Windows that the parent of your window will be the desktop.

You then have the menu handle parameter—hMenu. This menu handle works simi-
larly to the window class one, but you will go over this in the next chapter, so for
now, set it to NULL.

TABLE | 1.5 Window Styles

Value Description

WS_CHILDWINDQOW Creates a child window

WS_HSCROLL Creates a window with a scrollbar
WS_OVERLAPPEDWINDOW Creates a window with the normal window components
WS_POPUP Creates a pop-up window

WS_VISIBLE Creates a window initially visible

WS_VSCROLL Creates a window with a vertical scrollbar

334 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

You have the instance of the application—hInstance. This isn’t new to you, and
like before, you will use the hInstance parameter of WinMain.

Finally, you have the custom data sent to the window creation message —
WM_NCCREATE. This parameter will be used later in the chapter when you build a
reusable window class so I'll discuss it there.

Now that you have your window created, you will use Showhindow to show the win-
dow in accordance with the WinMain nCmdShow parameter. This isn’t a necessary step
but you should leave it there so that Windows can manipulate your window.

And you’re done. You have the window created and on the screen. Next, I'll go
over the message loop and handler to finish your first Windows application.

The Messaqge Loop

Now that you have created your window, you need to create a message loop. The
message loop is part of almost every windows program. (There are some advanced
techniques that actually allow you to skip this.) When an application is running, it
continually receives messages sent by Windows. These messages are then sent to
your application message queue. When your application is ready to process the
next message, it will call the function GetMessage that will store the message into a
MSG structure and then translate to and process it by your message handler. Because
you want to let your application continually run and process all the messages, you
use a loop to repeat all these steps until the user quits the application. This entire
step is shown from lines 47 through 54.

You first declare a MSG structure and create the message loop as so:

MSG kMessage;
while (GetMessage (&kMessage, hWindow, 0, 0))

This creates a message loop that will continue executing until the user exits the
application.

The GetMessage function is used to retrieve a message from the application message
queue and store it in a MSG structure. Its prototype is as follows:

BOOL GetMessage(LPMSG 1pMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax);

' Building the Windows Application 335

This function returns zero when the user exits the application, or more accurately,
the application receives a WM_QUIT message. The first parameter to this function is a
pointer to a MSG structure. This is where the information about the message will be
stored.

The second parameter is the handle to the window where you retrieve the message.
You will use hiWindow because it’s the handle to the window you created.

The last two parameters are the filter values that enable you to filter some messages
out. You won’t use them, so set them both as zero.

Inside the loop, you have to translate all virtual key codes into character messages.
This isn’t a necessary or an important step but you should do it to guarantee total
keyboard integration with your program. You achieve this by calling
TranslateMessage with the address of your message as the parameter.

When this is done, you just need to send the message to your message handler with
DispatchMessage. To do this, call DispatchMessage with the address of your message as
parameter.

The last line in WinMain is just the return value of the application, zero.

The Message Handler

You are in the final part of your first Windows application with just the message
handler missing. The message handler is the function that handles all the messages
sent to your window. You have already defined

its prototype in the beginning of the file, so

focus on the function itself. NOTE

When the user presses a key or moves the You refer to the message handler
mouse, a message is sent to your applica- ad handler.Windowssand some
tion. When this happens, you have the documents refer to this message
choice of processing it or letting Windows handler as the window procedure.
do it. You usually process only a few mes- Both of these names stand for
sages from more than hundreds available. the same thing.

In this program, you only take in account

the WM_CLOSE message, which is sent to your
application whenever the user tries to quit the application. When this message is
sent, you handle it by sending a quit message using the PostQuitMessage function.

336 11. Beginning Windows Programming

J‘—LI_‘—'EF”_U"—'—-—I_Iﬁl_'.L,ﬁl_.—'HJ—L

So, back to the code! Four parameters are in your message handler function
WndProc. The first one—hWindow—is the handle of the window that received the
message. The second parameter— iMessage—1is the actual message code that is sent
to your window. The third and fourth parameters—wParam and 1Param respec-
tively—are just the message parameters. I will explain them when I deal with other
messages.

Inside the function you use a switch statement to check what message was sent and
then handle it. In this simple program, you are only interested in the WM_CLOSE mes-
sage so it will be the only one you will handle. Tell Windows to quit your applica-
tion with the following code:

PostQuitMessage (0);
The PostQuitMessage is defined like this:
void PostQuitMessage(int nExitCode);

This function has only one parameter—the exit code that will be sent to the
WM_QUIT message.

Now that you have your message handled, you need to add a default case to your
switch to allow Windows to handle the messages that you didn’t. In the default
case, you simply send it back to Windows for processing using the DefWindowProc
function using the same parameters that your message handler accepts, like this:

return DefWindowProc (hWindow, iMessage, wParam, 1Param);

You also return the result of this function to let Windows know what happened
when you dealt with the message. You don’t need to worry about the inner work-
ings of this because Windows does it all automatically.

You are done with your first Windows application. It wasn’t that bad, was it? Well,
now comes the fun part: making a real-time message loop and encapsulating all
this into a working class.

Creating a Real-Time
Message Loop

Even if the window you created is okay for normal applications like Word or
Notepad, it isn’t for games. You need a loop that can execute your code each time
the application has no messages. This is called a real-time loop.

Creating a Real-Time Message Loop 337

sy = [—= LI —— = —1Lr],

The pseudocode behind the loop is as follows:

While Game is running
Begin
If there is any message in the window message queue
Begin
If it is quit message
Begin
Quit
End
If it is a normal message
Begin
Process message
End
End
If there is no message
Begin
Do game code
End
End

So, how does this translate to code? The first thing you do is remove your old mes-

sage loop to give space for the new one. Done? Okay, continue then. From the pre-
ceding pseudocode, you can see that you will be running the loop until you wish to
quit, so the first step is to create an infinite loop using something like the following:

while (1) {

Now that you are inside the loop, you need to determine whether there are any
messages in your window queue. This is achieved with a call to PeekMessage. The
PeekMessage function works similarly to the GetMessage function but returns true if
there is any message pending and returns false if there isn’t. Here is its definition:

BOOL PeekMessage (LPMSG TpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax,
UINT nRemove);

PeekMessage returns true if there are any message in the window message queue and
false if there isn’t. You will be using that return value shortly but first I’ll go over
the parameter list. As you can see, the first